LCOGT / mop

Microlensing Observation Portal
GNU General Public License v3.0
1 stars 7 forks source link

Multiprocessing error when 'Fit Target' button is clicked from TargetDetail page #60

Open rachel3834 opened 1 year ago

rachel3834 commented 1 year ago

The Fit Target button on MOP's TargetDetail page calls the management command fit_event_PSPL via Django's call_command function.

This operation fails to complete the fitting process, and fails reporting an error relating to Python's multiprocessing module:

mop-dev-5f7cb5c897-hfxqb mop Fitting single event: OGLE-2023-BLG-1060 mop-dev-5f7cb5c897-hfxqb mop Fitting event: OGLE-2023-BLG-1060 mop-dev-5f7cb5c897-hfxqb mop FIT: Found 3 datasets and a total of 153 datapoints to model for event OGLE-2023-BLG-1060 mop-dev-5f7cb5c897-hfxqb mop FITTOOLS: established event mop-dev-5f7cb5c897-hfxqb mop FITTOOLS: appended 3 telescopes mop-dev-5f7cb5c897-hfxqb mop check_event : Everything looks fine... mop-dev-5f7cb5c897-hfxqb mop [2023-09-14 00:35:09 +0000] [23] [INFO] Parent changed, shutting down: <Worker 7> mop-dev-5f7cb5c897-hfxqb mop [2023-09-14 00:35:09 +0000] [23] [INFO] Worker exiting (pid: 7) mop-dev-5f7cb5c897-hfxqb mop Internal Server Error: /targets/1506/ mop-dev-5f7cb5c897-hfxqb mop Traceback (most recent call last): mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/exception.py", line 55, in inner mop-dev-5f7cb5c897-hfxqb mop response = get_response(request) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 199, in _get_response mop-dev-5f7cb5c897-hfxqb mop response = self.process_exception_by_middleware(e, request) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 362, in process_exception_by_middleware mop-dev-5f7cb5c897-hfxqb mop response = middleware_method(request, exception) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/tom_common/middleware.py", line 29, in process_exception mop-dev-5f7cb5c897-hfxqb mop raise exception mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 197, in _get_response mop-dev-5f7cb5c897-hfxqb mop response = wrapped_callback(request, *callback_args, callback_kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/views/generic/base.py", line 104, in view mop-dev-5f7cb5c897-hfxqb mop return self.dispatch(request, *args, *kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/guardian/mixins.py", line 213, in dispatch mop-dev-5f7cb5c897-hfxqb mop return super().dispatch(request, args, kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/views/generic/base.py", line 143, in dispatch mop-dev-5f7cb5c897-hfxqb mop return handler(request, *args, kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/views.py", line 17, in get mop-dev-5f7cb5c897-hfxqb mop call_command('fit_event_PSPL', target_name, cores=0, stdout=out) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/management/init.py", line 194, in call_command mop-dev-5f7cb5c897-hfxqb mop return command.execute(*args, *defaults) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/management/base.py", line 458, in execute mop-dev-5f7cb5c897-hfxqb mop output = self.handle(args, options) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/management/commands/fit_event_PSPL.py", line 37, in handle mop-dev-5f7cb5c897-hfxqb mop result = run_fit(target, cores=options['cores']) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/management/commands/fit_need_events_PSPL.py", line 50, in run_fit mop-dev-5f7cb5c897-hfxqb mop (model_params, model_telescope) = fittools.fit_pspl_omega2(target.ra, target.dec, datasets) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/toolbox/fittools.py", line 78, in fit_pspl_omega2 mop-dev-5f7cb5c897-hfxqb mop fit_tap = TRF_fit.TRFfit(pspl, loss_function='soft_l1') mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/pyLIMA/fits/LM_fit.py", line 26, in init mop-dev-5f7cb5c897-hfxqb mop super().init(model, telescopes_fluxes_method=telescopes_fluxes_method, mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/pyLIMA/fits/ML_fit.py", line 67, in init mop-dev-5f7cb5c897-hfxqb mop self.trials = Manager().list() # to be recognize by all process during mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/managers.py", line 723, in temp mop-dev-5f7cb5c897-hfxqb mop token, exp = self._create(typeid, *args, kwds) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/managers.py", line 606, in _create mop-dev-5f7cb5c897-hfxqb mop conn = self._Client(self._address, authkey=self._authkey) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 508, in Client mop-dev-5f7cb5c897-hfxqb mop answer_challenge(c, authkey) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 752, in answer_challenge mop-dev-5f7cb5c897-hfxqb mop message = connection.recv_bytes(256) # reject large message mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes mop-dev-5f7cb5c897-hfxqb mop buf = self._recv_bytes(maxlength) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes mop-dev-5f7cb5c897-hfxqb mop buf = self._recv(4) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 379, in _recv mop-dev-5f7cb5c897-hfxqb mop chunk = read(handle, remaining) mop-dev-5f7cb5c897-hfxqb mop BlockingIOError: [Errno 11] Resource temporarily unavailable mop-dev-5f7cb5c897-hfxqb mop Internal Server Error: /targets/1506/ mop-dev-5f7cb5c897-hfxqb mop Traceback (most recent call last): mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/exception.py", line 55, in inner mop-dev-5f7cb5c897-hfxqb mop response = get_response(request) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 199, in _get_response mop-dev-5f7cb5c897-hfxqb mop response = self.process_exception_by_middleware(e, request) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 362, in process_exception_by_middleware mop-dev-5f7cb5c897-hfxqb mop response = middleware_method(request, exception) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/tom_common/middleware.py", line 29, in process_exception mop-dev-5f7cb5c897-hfxqb mop raise exception mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/handlers/base.py", line 197, in _get_response mop-dev-5f7cb5c897-hfxqb mop response = wrapped_callback(request, *callback_args, *callback_kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/views/generic/base.py", line 104, in view mop-dev-5f7cb5c897-hfxqb mop return self.dispatch(request, args, kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/guardian/mixins.py", line 213, in dispatch mop-dev-5f7cb5c897-hfxqb mop return super().dispatch(request, *args, kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/views/generic/base.py", line 143, in dispatch mop-dev-5f7cb5c897-hfxqb mop return handler(request, *args, *kwargs) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/views.py", line 17, in get mop-dev-5f7cb5c897-hfxqb mop call_command('fit_event_PSPL', target_name, cores=0, stdout=out) mop-dev-5f7cb5c897-hfxqb nginx 10.100.22.168 - - [14/Sep/2023:00:35:10 +0000] "GET /targets/1506/?fit_event=True HTTP/1.1" 500 174797 "http://mop-dev.lco.gtn/targets/1506/" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/117.0" "172.16.4.138" mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/management/init.py", line 194, in call_command mop-dev-5f7cb5c897-hfxqb mop return command.execute(args, defaults) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/django/core/management/base.py", line 458, in execute mop-dev-5f7cb5c897-hfxqb mop output = self.handle(*args, *options) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/management/commands/fit_event_PSPL.py", line 37, in handle mop-dev-5f7cb5c897-hfxqb mop result = run_fit(target, cores=options['cores']) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/management/commands/fit_need_events_PSPL.py", line 50, in run_fit mop-dev-5f7cb5c897-hfxqb mop (model_params, model_telescope) = fittools.fit_pspl_omega2(target.ra, target.dec, datasets) mop-dev-5f7cb5c897-hfxqb mop File "/mop/mop/toolbox/fittools.py", line 78, in fit_pspl_omega2 mop-dev-5f7cb5c897-hfxqb mop fit_tap = TRF_fit.TRFfit(pspl, loss_function='soft_l1') mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/pyLIMA/fits/LM_fit.py", line 26, in init mop-dev-5f7cb5c897-hfxqb mop super().init(model, telescopes_fluxes_method=telescopes_fluxes_method, mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/site-packages/pyLIMA/fits/ML_fit.py", line 67, in init mop-dev-5f7cb5c897-hfxqb mop self.trials = Manager().list() # to be recognize by all process during mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/managers.py", line 723, in temp mop-dev-5f7cb5c897-hfxqb mop token, exp = self._create(typeid, args, **kwds) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/managers.py", line 606, in _create mop-dev-5f7cb5c897-hfxqb mop conn = self._Client(self._address, authkey=self._authkey) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 508, in Client mop-dev-5f7cb5c897-hfxqb mop answer_challenge(c, authkey) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 752, in answer_challenge mop-dev-5f7cb5c897-hfxqb mop message = connection.recv_bytes(256) # reject large message mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes mop-dev-5f7cb5c897-hfxqb mop buf = self._recv_bytes(maxlength) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes mop-dev-5f7cb5c897-hfxqb mop buf = self._recv(4) mop-dev-5f7cb5c897-hfxqb mop File "/usr/local/lib/python3.10/multiprocessing/connection.py", line 379, in _recv mop-dev-5f7cb5c897-hfxqb mop chunk = read(handle, remaining) mop-dev-5f7cb5c897-hfxqb mop BlockingIOError: [Errno 11] Resource temporarily unavailable

However, if I call this management command from the commandline in the AWS pod, it works fine:

Fitting single event: OGLE-2023-BLG-1060 Fitting event: OGLE-2023-BLG-1060 FIT: Found 3 datasets and a total of 153 datapoints to model for event OGLE-2023-BLG-1060 FITTOOLS: established event FITTOOLS: appended 3 telescopes check_event : Everything looks fine... FITTOOLS: Set model 1, static PSPL FITTOOLS: model 1 fit boundaries: t0: [2456350.84273, 2460211.2596369935] tE: [1.0, 3000.0] u0: [0.0, 2.0] initial_guess : Initial parameters guess SUCCESS Using guess: [2460199.9534473536, 0.3986034527545734, 42.61485012369046, 4082.1178096757244, -449.86169383181266, 11047.863711119995, 0.0, 8305.000583692688, 0.0] fit : Trust Region Reflective fit SUCCESS best_model: [2460202.5784194306, 2.602090556033264e-12, 43.83730190663164, 3016.210975903218, 655.7479416388787, 340.59459072748865, 1621.2297675020925, 235.1503022483872, 1274.9162771390086] chi2: 457.94918659452014 FITTOOLS: model 1 fitted parameters {'t0': 2460202.57842, 'u0': 0.0, 'tE': 43.8373, 'fsource_Tel_0': 3016.21098, 'fblend_Tel_0': 655.74794, 'fsource_Tel_1': 340.59459, 'fblend_Tel_1': 1621.22977, 'fsource_Tel_2': 235.1503, 'fblend_Tel_2': 1274.91628, 'chi2': 1274.916, 'piEN': 0.0, 'piEE': 0.0, 'red_chi2': 8.854, 'Source_magnitude': 18.701, 'Blend_magnitude': 20.358, 'Baseline_magnitude': 18.488, 'Fit_covariance': array([[ 4.54790534e-01, -2.60934039e+04, -1.09077690e+00, 2.16146087e+02, -2.15047888e+02, 6.19342540e+01, -2.32715276e+02, 4.36391570e+01, -1.74600108e+02], [-2.60934039e+04, 1.51830507e+09, 6.19308579e+04, -1.23280087e+07, 1.22669613e+07, -3.50150418e+06, 1.29997286e+07, -2.45139620e+06, 9.39302155e+06], [-1.09077690e+00, 6.19308579e+04, 4.21858662e+01, -4.74344489e+03, 4.61121399e+03, -4.58785654e+02, 6.10090694e+02, -3.18845222e+02, 4.54838083e+02], [ 2.16146087e+02, -1.23280087e+07, -4.74344489e+03, 5.70070297e+05, -5.57226512e+05, 6.25691574e+04, -1.16208302e+05, 4.36176033e+04, -8.69409611e+04], [-2.15047888e+02, 1.22669613e+07, 4.61121399e+03, -5.57226512e+05, 5.45851557e+05, -6.14038984e+04, 1.15479122e+05, -4.28111539e+04, 8.64063246e+04], [ 6.19342540e+01, -3.50150418e+06, -4.58785654e+02, 6.25691574e+04, -6.14038984e+04, 1.09830851e+04, -3.30226069e+04, 7.73005690e+03, -2.54389063e+04], [-2.32715276e+02, 1.29997286e+07, 6.10090694e+02, -1.16208302e+05, 1.15479122e+05, -3.30226069e+04, 1.27238827e+05, -2.34209569e+04, 9.97327662e+04], [ 4.36391570e+01, -2.45139620e+06, -3.18845222e+02, 4.36176033e+04, -4.28111539e+04, 7.73005690e+03, -2.34209569e+04, 5.47735994e+03, -1.87461090e+04], [-1.74600108e+02, 9.39302155e+06, 4.54838083e+02, -8.69409611e+04, 8.64063246e+04, -2.54389063e+04, 9.97327662e+04, -1.87461090e+04, 9.30132232e+04]]), 'fit_parameters': OrderedDict([('t0', [0, [2456350.84273, 2460211.2596369935]]), ('u0', [1, [0.0, 2.0]]), ('tE', [2, [1.0, 3000.0]]), ('fsource_Tel_0', [3, (0.0, 10009.214583192937)]), ('fblend_Tel_0', [4, (-10009.214583192937, 10009.214583192937)]), ('fsource_Tel_1', [5, (0.0, 11047.863711119995)]), ('fblend_Tel_1', [6, (-11047.863711119995, 11047.863711119995)]), ('fsource_Tel_2', [7, (0.0, 8305.000583692688)]), ('fblend_Tel_2', [8, (-8305.000583692688, 8305.000583692688)])]), 'SW_test': nan, 'AD_test': nan, 'KS_test': nan, 'chi2_dof': nan} FITTOOLS: model 1 evaluated parameters {'t0': 2460202.57842, 'u0': 0.0, 'tE': 43.8373, 'fsource_Tel_0': 3016.21098, 'fblend_Tel_0': 655.74794, 'fsource_Tel_1': 340.59459, 'fblend_Tel_1': 1621.22977, 'fsource_Tel_2': 235.1503, 'fblend_Tel_2': 1274.91628, 'chi2': 1274.916, 'piEN': 0.0, 'piEE': 0.0, 'red_chi2': 8.854, 'Source_magnitude': 18.701, 'Blend_magnitude': 20.358, 'Baseline_magnitude': 18.488, 'Fit_covariance': array([[ 4.54790534e-01, -2.60934039e+04, -1.09077690e+00, 2.16146087e+02, -2.15047888e+02, 6.19342540e+01, -2.32715276e+02, 4.36391570e+01, -1.74600108e+02], [-2.60934039e+04, 1.51830507e+09, 6.19308579e+04, -1.23280087e+07, 1.22669613e+07, -3.50150418e+06, 1.29997286e+07, -2.45139620e+06, 9.39302155e+06], [-1.09077690e+00, 6.19308579e+04, 4.21858662e+01, -4.74344489e+03, 4.61121399e+03, -4.58785654e+02, 6.10090694e+02, -3.18845222e+02, 4.54838083e+02], [ 2.16146087e+02, -1.23280087e+07, -4.74344489e+03, 5.70070297e+05, -5.57226512e+05, 6.25691574e+04, -1.16208302e+05, 4.36176033e+04, -8.69409611e+04], [-2.15047888e+02, 1.22669613e+07, 4.61121399e+03, -5.57226512e+05, 5.45851557e+05, -6.14038984e+04, 1.15479122e+05, -4.28111539e+04, 8.64063246e+04], [ 6.19342540e+01, -3.50150418e+06, -4.58785654e+02, 6.25691574e+04, -6.14038984e+04, 1.09830851e+04, -3.30226069e+04, 7.73005690e+03, -2.54389063e+04], [-2.32715276e+02, 1.29997286e+07, 6.10090694e+02, -1.16208302e+05, 1.15479122e+05, -3.30226069e+04, 1.27238827e+05, -2.34209569e+04, 9.97327662e+04], [ 4.36391570e+01, -2.45139620e+06, -3.18845222e+02, 4.36176033e+04, -4.28111539e+04, 7.73005690e+03, -2.34209569e+04, 5.47735994e+03, -1.87461090e+04], [-1.74600108e+02, 9.39302155e+06, 4.54838083e+02, -8.69409611e+04, 8.64063246e+04, -2.54389063e+04, 9.97327662e+04, -1.87461090e+04, 9.30132232e+04]]), 'fit_parameters': OrderedDict([('t0', [0, [2456350.84273, 2460211.2596369935]]), ('u0', [1, [0.0, 2.0]]), ('tE', [2, [1.0, 3000.0]]), ('fsource_Tel_0', [3, (0.0, 10009.214583192937)]), ('fblend_Tel_0', [4, (-10009.214583192937, 10009.214583192937)]), ('fsource_Tel_1', [5, (0.0, 11047.863711119995)]), ('fblend_Tel_1', [6, (-11047.863711119995, 11047.863711119995)]), ('fsource_Tel_2', [7, (0.0, 8305.000583692688)]), ('fblend_Tel_2', [8, (-8305.000583692688, 8305.000583692688)])]), 'SW_test': nan, 'AD_test': nan, 'KS_test': nan, 'chi2_dof': nan} FITTOOLS: fit no-blend model? True FITTOOLS: Set model 2, static PSPL without blending FITTOOLS: model 2 fit boundaries: t0: [2456350.84273, 2460211.2596369935] tE: [1.0, 3000.0] u0: [0.0, 2.0] initial_guess : Initial parameters guess SUCCESS Using guess: [2460199.9534473536, 0.3986034527545734, 42.61485012369046, 3659.9893057160225, 2725.696300584958, 2778.638590625312] fit : Trust Region Reflective fit SUCCESS best_model: [2460202.895267906, 6.841332276563048e-14, 7.077440751853317, 3762.1926430405133, 2878.4721623252694, 2033.2917747834365] chi2: 815.1043271661866 FITTOOLS: model 2 fitted parameters {'t0': 2460202.57842, 'u0': 0.0, 'tE': 43.8373, 'fsource_Tel_0': 3016.21098, 'fblend_Tel_0': 655.74794, 'fsource_Tel_1': 340.59459, 'fblend_Tel_1': 1621.22977, 'fsource_Tel_2': 235.1503, 'fblend_Tel_2': 1274.91628, 'chi2': 1274.916, 'piEN': 0.0, 'piEE': 0.0, 'red_chi2': 8.854, 'Source_magnitude': 18.701, 'Blend_magnitude': 20.358, 'Baseline_magnitude': 18.488, 'Fit_covariance': array([[ 4.54790534e-01, -2.60934039e+04, -1.09077690e+00, 2.16146087e+02, -2.15047888e+02, 6.19342540e+01, -2.32715276e+02, 4.36391570e+01, -1.74600108e+02], [-2.60934039e+04, 1.51830507e+09, 6.19308579e+04, -1.23280087e+07, 1.22669613e+07, -3.50150418e+06, 1.29997286e+07, -2.45139620e+06, 9.39302155e+06], [-1.09077690e+00, 6.19308579e+04, 4.21858662e+01, -4.74344489e+03, 4.61121399e+03, -4.58785654e+02, 6.10090694e+02, -3.18845222e+02, 4.54838083e+02], [ 2.16146087e+02, -1.23280087e+07, -4.74344489e+03, 5.70070297e+05, -5.57226512e+05, 6.25691574e+04, -1.16208302e+05, 4.36176033e+04, -8.69409611e+04], [-2.15047888e+02, 1.22669613e+07, 4.61121399e+03, -5.57226512e+05, 5.45851557e+05, -6.14038984e+04, 1.15479122e+05, -4.28111539e+04, 8.64063246e+04], [ 6.19342540e+01, -3.50150418e+06, -4.58785654e+02, 6.25691574e+04, -6.14038984e+04, 1.09830851e+04, -3.30226069e+04, 7.73005690e+03, -2.54389063e+04], [-2.32715276e+02, 1.29997286e+07, 6.10090694e+02, -1.16208302e+05, 1.15479122e+05, -3.30226069e+04, 1.27238827e+05, -2.34209569e+04, 9.97327662e+04], [ 4.36391570e+01, -2.45139620e+06, -3.18845222e+02, 4.36176033e+04, -4.28111539e+04, 7.73005690e+03, -2.34209569e+04, 5.47735994e+03, -1.87461090e+04], [-1.74600108e+02, 9.39302155e+06, 4.54838083e+02, -8.69409611e+04, 8.64063246e+04, -2.54389063e+04, 9.97327662e+04, -1.87461090e+04, 9.30132232e+04]]), 'fit_parameters': OrderedDict([('t0', [0, [2456350.84273, 2460211.2596369935]]), ('u0', [1, [0.0, 2.0]]), ('tE', [2, [1.0, 3000.0]]), ('fsource_Tel_0', [3, (0.0, 10009.214583192937)]), ('fblend_Tel_0', [4, (-10009.214583192937, 10009.214583192937)]), ('fsource_Tel_1', [5, (0.0, 11047.863711119995)]), ('fblend_Tel_1', [6, (-11047.863711119995, 11047.863711119995)]), ('fsource_Tel_2', [7, (0.0, 8305.000583692688)]), ('fblend_Tel_2', [8, (-8305.000583692688, 8305.000583692688)])]), 'SW_test': nan, 'AD_test': nan, 'KS_test': nan, 'chi2_dof': nan} FITTOOLS: model 2 evaluated parameters {'t0': 2460202.57842, 'u0': 0.0, 'tE': 43.8373, 'fsource_Tel_0': 3016.21098, 'fblend_Tel_0': 655.74794, 'fsource_Tel_1': 340.59459, 'fblend_Tel_1': 1621.22977, 'fsource_Tel_2': 235.1503, 'fblend_Tel_2': 1274.91628, 'chi2': 1274.916, 'piEN': 0.0, 'piEE': 0.0, 'red_chi2': 8.854, 'Source_magnitude': 18.701, 'Blend_magnitude': 20.358, 'Baseline_magnitude': 18.488, 'Fit_covariance': array([[ 4.54790534e-01, -2.60934039e+04, -1.09077690e+00, 2.16146087e+02, -2.15047888e+02, 6.19342540e+01, -2.32715276e+02, 4.36391570e+01, -1.74600108e+02], [-2.60934039e+04, 1.51830507e+09, 6.19308579e+04, -1.23280087e+07, 1.22669613e+07, -3.50150418e+06, 1.29997286e+07, -2.45139620e+06, 9.39302155e+06], [-1.09077690e+00, 6.19308579e+04, 4.21858662e+01, -4.74344489e+03, 4.61121399e+03, -4.58785654e+02, 6.10090694e+02, -3.18845222e+02, 4.54838083e+02], [ 2.16146087e+02, -1.23280087e+07, -4.74344489e+03, 5.70070297e+05, -5.57226512e+05, 6.25691574e+04, -1.16208302e+05, 4.36176033e+04, -8.69409611e+04], [-2.15047888e+02, 1.22669613e+07, 4.61121399e+03, -5.57226512e+05, 5.45851557e+05, -6.14038984e+04, 1.15479122e+05, -4.28111539e+04, 8.64063246e+04], [ 6.19342540e+01, -3.50150418e+06, -4.58785654e+02, 6.25691574e+04, -6.14038984e+04, 1.09830851e+04, -3.30226069e+04, 7.73005690e+03, -2.54389063e+04], [-2.32715276e+02, 1.29997286e+07, 6.10090694e+02, -1.16208302e+05, 1.15479122e+05, -3.30226069e+04, 1.27238827e+05, -2.34209569e+04, 9.97327662e+04], [ 4.36391570e+01, -2.45139620e+06, -3.18845222e+02, 4.36176033e+04, -4.28111539e+04, 7.73005690e+03, -2.34209569e+04, 5.47735994e+03, -1.87461090e+04], [-1.74600108e+02, 9.39302155e+06, 4.54838083e+02, -8.69409611e+04, 8.64063246e+04, -2.54389063e+04, 9.97327662e+04, -1.87461090e+04, 9.30132232e+04]]), 'fit_parameters': OrderedDict([('t0', [0, [2456350.84273, 2460211.2596369935]]), ('u0', [1, [0.0, 2.0]]), ('tE', [2, [1.0, 3000.0]]), ('fsource_Tel_0', [3, (0.0, 10009.214583192937)]), ('fblend_Tel_0', [4, (-10009.214583192937, 10009.214583192937)]), ('fsource_Tel_1', [5, (0.0, 11047.863711119995)]), ('fblend_Tel_1', [6, (-11047.863711119995, 11047.863711119995)]), ('fsource_Tel_2', [7, (0.0, 8305.000583692688)]), ('fblend_Tel_2', [8, (-8305.000583692688, 8305.000583692688)])]), 'SW_test': nan, 'AD_test': nan, 'KS_test': nan, 'chi2_dof': nan} FITTOOLS: Using model 2 as best-fit model FITTOOLS: generated model lightcurve FIT: completed modeling process for OGLE-2023-BLG-1060 /usr/local/lib/python3.10/site-packages/django/db/models/fields/init.py:1595: RuntimeWarning:

DateTimeField ReducedDatum.timestamp received a naive datetime (2018-06-29 08:15:27.243860) while time zone support is active.

FIT: Searched for existing models <QuerySet [<ReducedDatum: ReducedDatum object (2321208)>]> FIT: Stored model lightcurve for event OGLE-2023-BLG-1060 Fitted parameters for OGLE-2023-BLG-1060: {'Alive': True, 'Last_fit': 2460201.516280174, 't0': 2460202.89527, 'u0': 0.0, 'tE': 7.07744, 'piEN': 0.0, 'piEE': 0.0, 'Source_magnitude': 18.461, 'Blend_magnitude': nan, 'Baseline_magnitude': 18.461, 'Fit_covariance': array([[ 4.72338657e-03, 1.17925089e-03, 3.44260940e-02, -1.05781825e-03, -7.26734588e+00, -5.38086623e+00], [ 1.17925089e-03, 4.52931248e-04, 1.15192688e-02, -3.90522806e-04, -2.74398009e+00, -2.11707696e+00], [ 3.44260940e-02, 1.15192688e-02, 3.05964123e-01, -9.41917698e-03, -6.99882105e+01, -5.36284677e+01], [-1.05781825e-03, -3.90522806e-04, -9.41917698e-03, 1.83896553e+03, 2.15603096e+00, 1.65249992e+00], [-7.26734588e+00, -2.74398010e+00, -6.99882105e+01, 2.15603096e+00, 1.67097545e+04, 1.27342639e+04], [-5.38086623e+00, -2.11707696e+00, -5.36284677e+01, 1.65249992e+00, 1.27342639e+04, 9.99307899e+03]]), 'chi2': 2033.292, 'red_chi2': 13.832, 'KS_test': nan, 'AD_test': nan, 'SW_test': nan}

Note that this behaviour is only seen in MOP deployed in AWS and not in localhost testing.

rachel3834 commented 1 year ago

This is despite the fact that this fitting process uses TRFfit, which does not use the multiprocessor module.