You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Follow up:
You may only use constant extra space.
Recursive approach is fine, you may assume implicit stack space does not count as extra space for this problem.
Example 1:
Input: root = [1,2,3,4,5,6,7]
Output: [1,#,2,3,#,4,5,6,7,#]
Explanation: Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
代码
"""
# Definition for a Node.
class Node(object):
def __init__(self, val, left, right, next):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution(object):
def connect(self, root):
"""
:type root: Node
:rtype: Node
"""
if not root or not root.left:
return root
root.left.next = root.right
if root.next:
root.right.next = root.next.left
self.connect(root.left)
self.connect(root.right)
return root
class Solution(object):
def connect(self, root):
"""
:type root: Node
:rtype: Node
"""
if not root:
return None
queue = deque()
queue.append(root)
while queue:
preNode = Node()
queuelen = len(queue)
for _ in range(queuelen):
cur = queue.popleft()
if preNode:
preNode.next = cur
preNode = cur
if cur.left:
queue.append(cur.left)
if cur.right:
queue.append(cur.right)
return root
You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to
NULL
.Initially, all next pointers are set to
NULL
.Follow up:
Example 1:
代码