Open Laurae2 opened 4 years ago
Use the following to install xgboost with R 4.0 and Intel MKL:
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
mkdir build
cd build
cmake .. -DR_LIB=ON -DUSE_CUDA=ON -DCMAKE_C_COMPILER=/usr/bin/gcc-7 -DCMAKE_CXX_COMPILER=/usr/bin/g++-7 -DUSE_NCCL=ON -DNCCL_ROOT=/usr/lib/x86_64-linux-gnu
make -j 36
make install -I/opt/intel/compilers_and_libraries_2019.4.243/linux/mkl/lib/intel64_lin/
sudo R CMD INSTALL ./R-package
Test case:
library(xgboost)
set.seed(1)
N <- 500000
p <- 100
pp <- 25
X <- matrix(runif(N * p), ncol = p)
betas <- 2 * runif(pp) - 1
sel <- sort(sample(p, pp))
m <- X[, sel] %*% betas - 1 + rnorm(N)
y <- rbinom(N, 1, plogis(m))
tr <- sample.int(N, N * 0.90)
trainer <- function(n_cpus, n_gpus, n_iterations) {
dtrain <- xgb.DMatrix(X[tr,], label = y[tr])
dtest <- xgb.DMatrix(X[-tr,], label = y[-tr])
wl <- list(test = dtest)
if (n_gpus == 0) {
pt <- proc.time()
model <- xgb.train(list(objective = "reg:logistic", eval_metric = "logloss", subsample = 0.8, nthread = n_cpus, eta = 0.10,
max_bin = 64, tree_method = "hist"),
dtrain, watchlist = wl, nrounds = n_iterations)
my_time <- proc.time() - pt
} else {
pt <- proc.time()
model <- xgb.train(list(objective = "reg:logistic", eval_metric = "logloss", subsample = 0.8, nthread = n_cpus, eta = 0.10,
max_bin = 64, tree_method = "gpu_hist", n_gpus = n_gpus),
dtrain, watchlist = wl, nrounds = n_iterations)
my_time <- proc.time() - pt
}
rm(model, dtrain, dtest)
gc(verbose = FALSE)
return(my_time)
}
trainer(1, 1, 50)
trainer(1, 0, 50)
Results:
R Under development (unstable) (2020-03-27 r78091) -- "Unsuffered Consequences"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(xgboost)
>
> set.seed(1)
> N <- 500000
> p <- 100
> pp <- 25
> X <- matrix(runif(N * p), ncol = p)
> betas <- 2 * runif(pp) - 1
> sel <- sort(sample(p, pp))
> m <- X[, sel] %*% betas - 1 + rnorm(N)
> y <- rbinom(N, 1, plogis(m))
>
> tr <- sample.int(N, N * 0.90)
>
> trainer <- function(n_cpus, n_gpus, n_iterations) {
+
+ dtrain <- xgb.DMatrix(X[tr,], label = y[tr])
+ dtest <- xgb.DMatrix(X[-tr,], label = y[-tr])
+ wl <- list(test = dtest)
+
+ if (n_gpus == 0) {
+
+ pt <- proc.time()
+ model <- xgb.train(list(objective = "reg:logistic", eval_metric = "logloss", subsample = 0.8, nthread = n_cpus, eta = 0.10,
+ max_bin = 64, tree_method = "hist"),
+ dtrain, watchlist = wl, nrounds = n_iterations)
+ my_time <- proc.time() - pt
+
+ } else {
+
+ pt <- proc.time()
+ model <- xgb.train(list(objective = "reg:logistic", eval_metric = "logloss", subsample = 0.8, nthread = n_cpus, eta = 0.10,
+ max_bin = 64, tree_method = "gpu_hist", n_gpus = n_gpus),
+ dtrain, watchlist = wl, nrounds = n_iterations)
+ my_time <- proc.time() - pt
+
+ }
+
+ rm(model, dtrain, dtest)
+ gc(verbose = FALSE)
+
+ return(my_time)
+
+ }
>
> trainer(1, 1, 50)
[18:44:17] WARNING: /home/laurae/Downloads/R/xgboost/include/xgboost/generic_parameters.h:36:
n_gpus:
Deprecated. Single process multi-GPU training is no longer supported.
Please switch to distributed training with one process per GPU.
This can be done using Dask or Spark. See documentation for details.
[1] test-logloss:0.687465
[2] test-logloss:0.682720
[3] test-logloss:0.678590
[4] test-logloss:0.675024
[5] test-logloss:0.671988
[6] test-logloss:0.669297
[7] test-logloss:0.666885
[8] test-logloss:0.664741
[9] test-logloss:0.662744
[10] test-logloss:0.660938
[11] test-logloss:0.659223
[12] test-logloss:0.657735
[13] test-logloss:0.656362
[14] test-logloss:0.655067
[15] test-logloss:0.653892
[16] test-logloss:0.652753
[17] test-logloss:0.651746
[18] test-logloss:0.650809
[19] test-logloss:0.649926
[20] test-logloss:0.649096
[21] test-logloss:0.648273
[22] test-logloss:0.647593
[23] test-logloss:0.646822
[24] test-logloss:0.646082
[25] test-logloss:0.645458
[26] test-logloss:0.644867
[27] test-logloss:0.644329
[28] test-logloss:0.643732
[29] test-logloss:0.643188
[30] test-logloss:0.642666
[31] test-logloss:0.642239
[32] test-logloss:0.641737
[33] test-logloss:0.641328
[34] test-logloss:0.640816
[35] test-logloss:0.640435
[36] test-logloss:0.640006
[37] test-logloss:0.639663
[38] test-logloss:0.639272
[39] test-logloss:0.638916
[40] test-logloss:0.638568
[41] test-logloss:0.638268
[42] test-logloss:0.637945
[43] test-logloss:0.637617
[44] test-logloss:0.637404
[45] test-logloss:0.637157
[46] test-logloss:0.636902
[47] test-logloss:0.636716
[48] test-logloss:0.636500
[49] test-logloss:0.636262
[50] test-logloss:0.636045
user system elapsed
3.687 0.852 4.666
> trainer(1, 0, 50)
[1] test-logloss:0.687480
[2] test-logloss:0.682716
[3] test-logloss:0.678664
[4] test-logloss:0.675134
[5] test-logloss:0.672144
[6] test-logloss:0.669425
[7] test-logloss:0.666906
[8] test-logloss:0.664728
[9] test-logloss:0.662718
[10] test-logloss:0.661065
[11] test-logloss:0.659484
[12] test-logloss:0.657958
[13] test-logloss:0.656504
[14] test-logloss:0.655166
[15] test-logloss:0.654018
[16] test-logloss:0.652931
[17] test-logloss:0.651872
[18] test-logloss:0.650910
[19] test-logloss:0.650024
[20] test-logloss:0.649156
[21] test-logloss:0.648393
[22] test-logloss:0.647713
[23] test-logloss:0.646957
[24] test-logloss:0.646182
[25] test-logloss:0.645562
[26] test-logloss:0.644967
[27] test-logloss:0.644405
[28] test-logloss:0.643904
[29] test-logloss:0.643418
[30] test-logloss:0.642868
[31] test-logloss:0.642303
[32] test-logloss:0.641841
[33] test-logloss:0.641390
[34] test-logloss:0.640920
[35] test-logloss:0.640521
[36] test-logloss:0.640097
[37] test-logloss:0.639677
[38] test-logloss:0.639321
[39] test-logloss:0.638976
[40] test-logloss:0.638593
[41] test-logloss:0.638342
[42] test-logloss:0.637964
[43] test-logloss:0.637667
[44] test-logloss:0.637394
[45] test-logloss:0.637112
[46] test-logloss:0.636879
[47] test-logloss:0.636631
[48] test-logloss:0.636388
[49] test-logloss:0.636186
[50] test-logloss:0.635976
user system elapsed
19.236 0.167 19.412
Use the following to install LightGBM with R 4.0:
git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
nano ./R-package/src/install.libs.R
[change `use_GPU <- FALSE` to `use_GPU <- TRUE`, Ctrl+X + Y + Enter]
sudo Rscript build_r.R
Test case:
library(lightgbm)
library(Matrix)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
train$data[, 1] <- 1:6513
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
valids <- list(test = dtest)
params <- list(objective = "regression",
metric = "rmse",
device = "gpu",
gpu_platform_id = 0,
gpu_device_id = 0,
nthread = 1,
boost_from_average = FALSE,
max_bin = 32)
model <- lgb.train(params,
dtrain,
2,
valids,
min_data = 1,
learning_rate = 1,
early_stopping_rounds = 10)
Latest news: https://developer.r-project.org/blosxom.cgi/R-devel/NEWS
To install R-devel 4.0 from 20 March 2020 or later, install
libpcre2-dev
with the following:Else error:
pcre2 library and headers are required