Closed kjzxzzh closed 5 years ago
i have tried your code DeepFM_BOW with criteo dataset .However , my best result is "global_auc : 0.78648". Could you please release your best params on criteo ? The params I use is as follows:
params = { 'reg_w_linear': 0.0001, 'reg_w_fm':0.0001, 'reg_w_nn': 0.0001, #0.001 'reg_w_l1': 0.0001, 'init_value': 0.001, 'layer_sizes': [400,400], 'activations':['relu','tanh'],# 'eta': 0.1, 'n_epoch': 100, # 500 'batch_size': 4096, 'dim': 15, 'model_path': 'models', 'train_file': 'train.txt' ,#'data/demodata.fieldwise.txt', 'test_file': 'test.txt' ,# 'data/demodata.fieldwise.txt', 'output_predictions':False, 'is_use_fm_part':True, 'is_use_dnn_part':True, 'multi_level_num':1, 'learning_rate':0.0001, # [0.001, 0.01] 'loss': 'log_loss', # [cross_entropy_loss, square_loss, log_loss] 'optimizer':'adam', # [adam, ftrl, sgd] 'clean_cache':True, 'metrics': [ #{'name': 'individual_auc'}, {'name': 'global_auc'} #, {'name': 'precision', 'k': 1} #, {'name': 'precision', 'k': 5} # , {'name': 'precision', 'k': 10} ] }
looking forward to your reply
i have tried your code DeepFM_BOW with criteo dataset .However , my best result is "global_auc : 0.78648". Could you please release your best params on criteo ? The params I use is as follows:
looking forward to your reply