Leavingseason / OpenLearning4DeepRecsys

Some deep learning based recsys for open learning.
398 stars 153 forks source link

DeepFM_bow issue with criteo dataset #17

Closed kjzxzzh closed 5 years ago

kjzxzzh commented 5 years ago

i have tried your code DeepFM_BOW with criteo dataset .However , my best result is "global_auc : 0.78648". Could you please release your best params on criteo ? The params I use is as follows:

    params = {
        'reg_w_linear': 0.0001, 'reg_w_fm':0.0001, 'reg_w_nn': 0.0001,  #0.001
        'reg_w_l1': 0.0001,
        'init_value': 0.001,
        'layer_sizes': [400,400],
        'activations':['relu','tanh'],#
        'eta': 0.1,
        'n_epoch': 100,  # 500
        'batch_size': 4096,
        'dim': 15,
        'model_path': 'models',
        'train_file': 'train.txt' ,#'data/demodata.fieldwise.txt',  
        'test_file':  'test.txt' ,# 'data/demodata.fieldwise.txt',
        'output_predictions':False,
        'is_use_fm_part':True,
        'is_use_dnn_part':True,
        'multi_level_num':1,
        'learning_rate':0.0001, # [0.001, 0.01]
        'loss': 'log_loss', # [cross_entropy_loss, square_loss, log_loss]
        'optimizer':'adam', # [adam, ftrl, sgd]
        'clean_cache':True,
        'metrics': [
            #{'name': 'individual_auc'},
             {'name': 'global_auc'}
            #, {'name': 'precision', 'k': 1}
            #, {'name': 'precision', 'k': 5}
            # , {'name': 'precision', 'k': 10}
        ]

    }

looking forward to your reply