This is a deep learning application project in the industrial field, intended to detect defects on the workpiece surface. The code is based on keras and runs on GPU.
I haven't encountered the problem you described. Please make sure you haven't changed the input shape. The problem is in the plot_Result function. Please check it.
Hi,Tried to python test_model_up.py My data used KolektorSDD .
================================================================================================== Total params: 4,838,622 Trainable params: 4,835,006 Non-trainable params: 3,616
开始处理第 1 张图片... 2020-03-12 10:22:58.419945: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10 2020-03-12 10:22:58.642987: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7 第1例分类正确!耗时:3.6043s 开始处理第 2 张图片... 第2例分类正确!耗时:0.4295s 开始处理第 3 张图片... 第3例分类正确!耗时:0.4233s 开始处理第 4 张图片... 第4例分类正确!耗时:0.4182s 开始处理第 5 张图片... 第5例分类正确!耗时:0.4234s 开始处理第 6 张图片... 第6例分类错误!耗时:0.4298s Traceback (most recent call last): File "test_model_up.py", line 131, in
plot_result(sort_list[i], result, delta_h, target_size)
File "test_model_up.py", line 49, in plot_result
imgs1[target_size[0]*k:,...] = array_img_reshape(fig_k, (target_size[0], delta_h))
ValueError: could not broadcast input array from shape (270,500,1) into shape (260,500,1)