Closed luser350 closed 2 weeks ago
Hi, I have been trying to train ffhqr at 1024 x 1024 resolution. Here are the changes in my config file. I am using ffhq as low-quality images.
class Params: def __init__(self): self.name = 'GFPGAN' self.mode = 'encoder' self.pretrain_path = 'GFPGAN-1024/checkpoint/GFPGAN/decoder/001-00027000.pth' self.scratch_gan_path = 'pretrained_models/GFPGANv1.4.pth' self.scratch_d_path = 'pretrained_models/GFPGANv1_net_d.pth' self.scratch_left_eye_path = 'pretrained_models/GFPGANv1_net_d_left_eye.pth' self.scratch_right_eye_path = 'pretrained_models/GFPGANv1_net_d_right_eye.pth' self.scratch_mouth_path = 'pretrained_models/GFPGANv1_net_d_mouth.pth' self.id_model = 'pretrained_models/arcface_resnet18.pth' self.img_root = "output/train/ffhqr" self.train_hq_root = "output/train/ffhqr" self.train_lq_root = 'output/train/ffhq' self.train_lmk_base = '' # lmk info self.val_lmk_base = '' self.val_lq_root = 'output/val/ffhq' self.val_hq_root = 'output/val/ffhqr' self.g_lr = 1e-3
I have commented out lines 210 to 228 in dataloader/GFPLoader.py since I provide low-quality images, I did not need to produce them.
# ------------------------ generate lq image ------------------------ # # blur ''' if not self.eval: kernel = degradations.random_mixed_kernels( self.kernel_list, self.kernel_prob, self.blur_kernel_size, self.blur_sigma, self.blur_sigma, [-math.pi, math.pi], noise_range=None) img_lq = cv2.filter2D(img_lq, -1, kernel) # downsample scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR) # # noise if self.noise_range is not None: img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range) # jpeg compression if self.jpeg_range is not None: img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range) ''' # resize to original size img_lq = cv2.resize(img_lq, (512, 512), interpolation=cv2.INTER_LINEAR) img_hq = cv2.resize(img_hq, (1024, 1024))
Why img_lq is resized to 512x512 because I want to train on ffhq @ 1024x1024 to produce ffhqr 1024x1024?
Hi, I have been trying to train ffhqr at 1024 x 1024 resolution. Here are the changes in my config file. I am using ffhq as low-quality images.
I have commented out lines 210 to 228 in dataloader/GFPLoader.py since I provide low-quality images, I did not need to produce them.
Why img_lq is resized to 512x512 because I want to train on ffhq @ 1024x1024 to produce ffhqr 1024x1024?