尝试使用criterion(outs , mask)计算损失,出错:
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.
同样的损失函数,我在其他模型上可以顺利进行
你好,非常优秀的工作,我在此基础上,想尝试加一个损失,我在其他模型上尝试成功了,但是在使用unimatch的代码上修改,就有问题,请指教!
output_d = output[:, 1:, :, :].sum(dim=1) output_f = output[:, 0, :, :] outs = torch.stack([output_f, output_d], dim=1)
尝试使用criterion(outs , mask)计算损失,出错: RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with
TORCH_USE_CUDA_DSA
to enable device-side assertions. 同样的损失函数,我在其他模型上可以顺利进行