LoicGrobol / zeldarose

Train transformer-based models.
https://zeldarose.readthedocs.io
Other
28 stars 3 forks source link

Update tokenizers requirement from <0.20,>=0.10 to >=0.10,<0.21 #110

Open dependabot[bot] opened 2 months ago

dependabot[bot] commented 2 months ago

Updates the requirements on tokenizers to permit the latest version.

Release notes

Sourced from tokenizers's releases.

Release v0.20.0: faster encode, better python support

Release v0.20.0

This release is focused on performances and user experience.

Performances:

First off, we did a bit of benchmarking, and found some place for improvement for us! With a few minor changes (mostly #1587) here is what we get on Llama3 running on a g6 instances on AWS https://github.com/huggingface/tokenizers/blob/main/bindings/python/benches/test_tiktoken.py : image

Python API

We shipped better deserialization errors in general, and support for __str__ and __repr__ for all the object. This allows for a lot easier debugging see this:

>>> from tokenizers import Tokenizer;
>>> tokenizer = Tokenizer.from_pretrained("bert-base-uncased");
>>> print(tokenizer)
Tokenizer(version="1.0", truncation=None, padding=None, added_tokens=[{"id":0, "content":"[PAD]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":100, "content":"[UNK]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":101, "content":"[CLS]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":102, "content":"[SEP]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":103, "content":"[MASK]", "single_word":False, "lstrip":False, "rstrip":False, ...}], normalizer=BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True), pre_tokenizer=BertPreTokenizer(), post_processor=TemplateProcessing(single=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0)], pair=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0), Sequence(id=B, type_id=1), SpecialToken(id="[SEP]", type_id=1)], special_tokens={"[CLS]":SpecialToken(id="[CLS]", ids=[101], tokens=["[CLS]"]), "[SEP]":SpecialToken(id="[SEP]", ids=[102], tokens=["[SEP]"])}), decoder=WordPiece(prefix="##", cleanup=True), model=WordPiece(unk_token="[UNK]", continuing_subword_prefix="##", max_input_chars_per_word=100, vocab={"[PAD]":0, "[unused0]":1, "[unused1]":2, "[unused2]":3, "[unused3]":4, ...}))

>>> tokenizer Tokenizer(version="1.0", truncation=None, padding=None, added_tokens=[{"id":0, "content":"[PAD]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":100, "content":"[UNK]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":101, "content":"[CLS]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":102, "content":"[SEP]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":103, "content":"[MASK]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}], normalizer=BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True), pre_tokenizer=BertPreTokenizer(), post_processor=TemplateProcessing(single=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0)], pair=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0), Sequence(id=B, type_id=1), SpecialToken(id="[SEP]", type_id=1)], special_tokens={"[CLS]":SpecialToken(id="[CLS]", ids=[101], tokens=["[CLS]"]), "[SEP]":SpecialToken(id="[SEP]", ids=[102], tokens=["[SEP]"])}), decoder=WordPiece(prefix="##", cleanup=True), model=WordPiece(unk_token="[UNK]", continuing_subword_prefix="##", max_input_chars_per_word=100, vocab={"[PAD]":0, "[unused0]":1, "[unused1]":2, ...}))

The pre_tokenizer.Sequence and normalizer.Sequence are also more accessible now:

from tokenizers import normalizers
norm = normalizers.Sequence([normalizers.Strip(), normalizers.BertNormalizer()])
norm[0]
norm[1].lowercase=False

What's Changed

... (truncated)

Commits
  • a5adaac version 0.20.0
  • a8def07 Merge branch 'fix_release' of github.com:huggingface/tokenizers into branch_v...
  • fe50673 Fix CI
  • b253835 push cargo
  • fc3bb76 update dependencies
  • bfd9cde Perf improvement 16% by removing offsets. (#1587)
  • bd27fa5 add deserialize for pre tokenizers (#1603)
  • 56c9c70 Tests + Deserialization improvement for normalizers. (#1604)
  • 49dafd7 Fix strip python type (#1602)
  • bded212 Support None to reset pre_tokenizers and normalizers, and index sequences (...
  • Additional commits viewable in compare view


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)