LoicGrobol / zeldarose

Train transformer-based models.
https://zeldarose.readthedocs.io
Other
28 stars 3 forks source link

Update torch requirement from <1.14.0,>=1.12.0 to >=1.12.0,<2.1.0 #47

Closed dependabot[bot] closed 1 year ago

dependabot[bot] commented 1 year ago

Updates the requirements on torch to permit the latest version.

Release notes

Sourced from torch's releases.

PyTorch 2.0: Our next generation release that is faster, more Pythonic and Dynamic as ever

PyTorch 2.0 Release notes

  • Highlights
  • Backwards Incompatible Changes
  • Deprecations
  • New Features
  • Improvements
  • Bug fixes
  • Performance
  • Documentation

Highlights

We are excited to announce the release of PyTorch® 2.0 (release note) which we highlighted during the PyTorch Conference on 12/2/22! PyTorch 2.0 offers the same eager-mode development and user experience, while fundamentally changing and supercharging how PyTorch operates at compiler level under the hood with faster performance and support for Dynamic Shapes and Distributed.

This next-generation release includes a Stable version of Accelerated Transformers (formerly called Better Transformers); Beta includes torch.compile as the main API for PyTorch 2.0, the scaled_dot_product_attention function as part of torch.nn.functional, the MPS backend, functorch APIs in the torch.func module; and other Beta/Prototype improvements across various inferences, performance and training optimization features on GPUs and CPUs. For a comprehensive introduction and technical overview of torch.compile, please visit the 2.0 Get Started page.

Along with 2.0, we are also releasing a series of beta updates to the PyTorch domain libraries, including those that are in-tree, and separate libraries including TorchAudio, TorchVision, and TorchText. An update for TorchX is also being released as it moves to community supported mode. More details can be found in this library blog.

This release is composed of over 4,541 commits and 428 contributors since 1.13.1. We want to sincerely thank our dedicated community for your contributions. As always, we encourage you to try these out and report any issues as we improve 2.0 and the overall 2-series this year.

Summary:

  • torch.compile is the main API for PyTorch 2.0, which wraps your model and returns a compiled model. It is a fully additive (and optional) feature and hence 2.0 is 100% backward compatible by definition.
  • As an underpinning technology of torch.compile, TorchInductor with Nvidia and AMD GPUs will rely on OpenAI Triton deep learning compiler to generate performant code and hide low level hardware details. OpenAI Triton-generated kernels achieve performance that's on par with hand-written kernels and specialized cuda libraries such as cublas.
  • Accelerated Transformers introduce high-performance support for training and inference using a custom kernel architecture for scaled dot product attention (SPDA). The API is integrated with torch.compile() and model developers may also use the scaled dot product attention kernels directly by calling the new scaled_dot_product_attention() operator.
  • Metal Performance Shaders (MPS) backend provides GPU accelerated PyTorch training on Mac platforms with added support for Top 60 most used ops, bringing coverage to over 300 operators.
  • Amazon AWS optimize the PyTorch CPU inference on AWS Graviton3 based C7g instances. PyTorch 2.0 improves inference performance on Graviton compared to the previous releases, including improvements for Resnet50 and Bert.
  • New prototype features and technologies across TensorParallel, DTensor, 2D parallel, TorchDynamo, AOTAutograd, PrimTorch and TorchInductor.

... (truncated)

Changelog

Sourced from torch's changelog.

Releasing PyTorch

Release Compatibility Matrix

Following is the Release Compatibility Matrix for PyTorch releases:

PyTorch version Python Stable CUDA Experimental CUDA
2.0 >=3.8, <=3.11 CUDA 11.7, CUDNN 8.5.0.96 CUDA 11.8, CUDNN 8.7.0.84
1.13 >=3.7, <=3.10 CUDA 11.6, CUDNN 8.3.2.44 CUDA 11.7, CUDNN 8.5.0.96
1.12 >=3.7, <=3.10 CUDA 11.3, CUDNN 8.3.2.44 CUDA 11.6, CUDNN 8.3.2.44

General Overview

Releasing a new version of PyTorch generally entails 3 major steps:

... (truncated)

Commits


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
LoicGrobol commented 1 year ago

@dependabot rebase please

LoicGrobol commented 1 year ago

@dependabot merge, please

dependabot[bot] commented 1 year ago

Dependabot tried to merge this PR, but received the following error from GitHub:

At least 1 approving review is required by reviewers with write access.