Lornatang / YOLOv3-PyTorch

Pytorch implements yolov3.Good performance, easy to use, fast speed.
Apache License 2.0
32 stars 15 forks source link

when using mobilenet v2, the mAP is rather small and i didn't get the expected result. #6

Closed sddai closed 11 months ago

sddai commented 3 years ago

Instructions To Reproduce the Issue:

  1. what changes you made (git diff) or what code you wrote
    i only changed the cfg file and weight file to mobilev2 in test.py
  2. what exact command you run: python test.py
  3. what you observed (including full logs): the mAP is rather small and i didn't get the expected result.
    
               Class    Images   Targets         P         R   mAP@0.5        F1: 100%|████████████████████| 313/313 [00:50<00:00,  6.17it/s]
                 all     5e+03  3.58e+04    0.0144    0.0101   0.00985    0.0114
              person     5e+03  1.09e+04    0.0377  0.000551  0.000341   0.00109
             bicycle     5e+03       316     0.443     0.201     0.185     0.277
                 car     5e+03  1.67e+03         0         0  3.11e-06         0
           motorbike     5e+03       391         0         0  7.81e-06         0
           aeroplane     5e+03       131         0         0         0         0
                 bus     5e+03       261     0.653     0.575       0.6     0.611
               train     5e+03       212         0         0   0.00012         0
               truck     5e+03       352         0         0  9.77e-06         0
                boat     5e+03       475         0         0  1.51e-05         0
       traffic light     5e+03       516         0         0         0         0
        fire hydrant     5e+03        83         0         0  6.15e-05         0
           stop sign     5e+03        84         0         0         0         0
       parking meter     5e+03        59         0         0         0         0
               bench     5e+03       473         0         0  0.000213         0
                bird     5e+03       469         0         0  7.56e-05         0
                 cat     5e+03       195   0.00279   0.00513  6.55e-05   0.00362
                 dog     5e+03       223    0.0126    0.0224   0.00196    0.0162
               horse     5e+03       305         0         0  3.03e-06         0
               sheep     5e+03       321         0         0         0         0
                 cow     5e+03       384         0         0  7.31e-07         0
            elephant     5e+03       284         0         0         0         0
                bear     5e+03        53         0         0         0         0
               zebra     5e+03       277         0         0         0         0
             giraffe     5e+03       170         0         0         0         0
            backpack     5e+03       384         0         0         0         0
            umbrella     5e+03       392         0         0         0         0
             handbag     5e+03       483         0         0         0         0
                 tie     5e+03       297         0         0         0         0
            suitcase     5e+03       310         0         0         0         0
             frisbee     5e+03       109         0         0         0         0
                skis     5e+03       282         0         0         0         0
           snowboard     5e+03        92         0         0         0         0
         sports ball     5e+03       236         0         0         0         0
                kite     5e+03       399         0         0         0         0
        baseball bat     5e+03       125         0         0         0         0
      baseball glove     5e+03       139         0         0         0         0
          skateboard     5e+03       218         0         0         0         0
           surfboard     5e+03       266         0         0         0         0
       tennis racket     5e+03       183         0         0         0         0
              bottle     5e+03       966         0         0         0         0
          wine glass     5e+03       366         0         0         0         0
                 cup     5e+03       897         0         0         0         0
                fork     5e+03       234         0         0         0         0
               knife     5e+03       291         0         0         0         0
               spoon     5e+03       253         0         0         0         0
                bowl     5e+03       620         0         0         0         0
              banana     5e+03       371         0         0         0         0
               apple     5e+03       158         0         0         0         0
            sandwich     5e+03       160         0         0         0         0
              orange     5e+03       189         0         0         0         0
            broccoli     5e+03       332         0         0         0         0
              carrot     5e+03       346         0         0         0         0
             hot dog     5e+03       164         0         0         0         0
               pizza     5e+03       224         0         0         0         0
               donut     5e+03       237         0         0         0         0
                cake     5e+03       241         0         0         0         0
               chair     5e+03  1.62e+03         0         0         0         0
                sofa     5e+03       236         0         0         0         0
         pottedplant     5e+03       431         0         0         0         0
                 bed     5e+03       195         0         0         0         0
         diningtable     5e+03       634         0         0         0         0
              toilet     5e+03       179         0         0         0         0
           tvmonitor     5e+03       257         0         0         0         0
              laptop     5e+03       237         0         0         0         0
               mouse     5e+03        95         0         0         0         0
              remote     5e+03       241         0         0         0         0
            keyboard     5e+03       117         0         0         0         0
          cell phone     5e+03       291         0         0         0         0
           microwave     5e+03        88         0         0         0         0
                oven     5e+03       142         0         0         0         0
             toaster     5e+03        11         0         0         0         0
                sink     5e+03       211         0         0         0         0
        refrigerator     5e+03       107         0         0         0         0
                book     5e+03  1.08e+03         0         0         0         0
               clock     5e+03       292         0         0         0         0
                vase     5e+03       353         0         0         0         0
            scissors     5e+03        56         0         0         0         0
          teddy bear     5e+03       245         0         0         0         0
          hair drier     5e+03        11         0         0         0         0
          toothbrush     5e+03        77         0         0         0         0
    /home/dsd/local/venv/lib/python3.8/site-packages/torch/cuda/memory.py:344: FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved
    warnings.warn(
    Inference menory: 1.4 GB.
    Speed:
    Image size: (416x416) at batch_size: 8
        - Inference 3.7ms.
        - NMS       3.8ms.
        - Total     7.5ms.
Lornatang commented 11 months ago

The latest method fixes the problem of heavy training.