Open Louis3030 opened 1 month ago
git add .
import cv2 import tensorflow as tf import numpy as np
def load_model(model_path):
model = tf.keras.models.load_model(model_path)
return model
def process_image(image_path):
image = cv2.imread(image_path)
image_resized = cv2.resize(image, (224, 224))
return np.expand_dims(image_resized, axis=0)
def predict_item(model, image):
predictions = model.predict(image)
item = np.argmax(predictions)
return item
def assess_damage(image):
damage_level = 0 # No damage = 0, Minor = 1, Major = 2
# Logic to detect damage (e.g., color analysis, edge detection, etc.)
return damage_level
import requests
API_URL = 'https://api.encircleapp.com/v1/claims/{claim_id}/inventory' API_KEY = 'your_api_key_here'
def upload_inventory_data(item_data, claim_id): headers = { 'Authorization': f'Bearer {API_KEY}', 'Content-Type': 'application/json' } response = requests.post(API_URL.format(claim_id=claim_id), json=item_data, headers=headers) if response.status_code == 201: print("Data successfully uploaded.") else: print(f"Failed to upload data. Status code: {response.status_code}") print(response.json()) return response.json()
def generate_item_payload(item, damage_level, description): payload = { 'item': item, 'damage_level': damage_level, 'description': description } return payload
def verify_data(item, damage_level, description): print(f"Item: {item}") print(f"Damage Level: {damage_level}") print(f"Description: {description}") confirmation = input("Do you want to submit this data? (yes/no): ") return confirmation.lower() == 'yes'
def main(image_path, model_path, claim_id):
model = load_model(model_path)
# Process the image and make predictions
image = process_image(image_path)
item = predict_item(model, image)
# Assess the damage
damage_level = assess_damage(image)
# Generate a description (this could be generated based on your needs)
description = "Description of the item"
# Verify the data
if verify_data(item, damage_level, description):
# Create the payload for submission
item_data = generate_item_payload(item, damage_level, description)
# Upload to the Encircle API
upload_inventory_data(item_data, claim_id)
else:
print("Submission cancelled.")
if name == "main": image_path = "/path/to/image.jpg" model_path = "/path/to/model.h5" claim_id = "12345678" main(image_path, model_path, claim_id)
pip install tensorflow opencv-python requests
python main.py --image_path /path/to/image.jpg --model_path /path/to/model.h5 --claim_id 12345678
git add .
git remote add origin https://github.com/your-username/inventory-automation.git
git push -u origin master
cd path/to/your/repository
touch object_detection.py
from google.cloud import vision
def detect_labels(path): """Detects labels in the file.""" client = vision.ImageAnnotatorClient()
with open(path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.label_detection(image=image)
labels = response.label_annotations
print('Labels:')
for label in labels:
print(label.description)
detect_labels('path_to_your_photo.jpg')
pip install google-cloud-vision
export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/key.json"
touch requirements.txt
google-cloud-vision
detect_labels('')
detect_labels('test_image.jpg')
python object_detection.py
git add object_detection.py requirements.txt git commit -m "Added Google Vision API for object detection"
git push origin main
key.json
This script uses the Google Vision API to detect objects in images and print labels.
pip install -r requirements.txt
export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/key.json"
python object_detection.py
git remote add origin https://github.com/your-username/inventory-automation.git git push -u origin master