LoveofSportsLLC / NFL

NFL + AI
https://loveoffootball.io/
MIT License
0 stars 0 forks source link

Implement Data Validation and Cleansing Routines: #68

Open zepor opened 2 months ago

zepor commented 2 months ago
    ○ Time: 1 week
    ○ Tools Required: Python (pandas), SQL
    ○ Steps:
        1. Create and run data validation scripts in Python using pandas.
            □ Define data quality rules and validation criteria.
        2. Perform necessary data cleansing operations.
            □ Implement cleansing operations such as removing duplicates, handling missing values.
    ○ Documentation:
        § Validation and cleansing script examples.
        § Detailed explanations of validation criteria.
    ○ Major Milestone: Data validation and cleansing routines implemented.
    ○ GitHub Issue:

Implement Data Validation and Cleansing Routines

Description: Create and execute data validation and cleansing scripts using Python. Tasks:

codeautopilot[bot] commented 2 months ago

Potential solution

The task involves implementing data validation and cleansing routines using Python and pandas, and documenting these routines. The solution will include defining data quality rules, creating validation and cleansing functions, and providing examples and documentation.

How to implement

Step-by-Step Implementation

1. Define Data Quality Rules and Validation Criteria

Create functions to check for common data quality issues such as missing values, duplicates, and data type mismatches.

2. Implement Data Cleansing Operations

Create functions to handle missing values (e.g., imputation or removal) and remove duplicates.

3. Document the Code

Add docstrings to explain the purpose and usage of each function.

4. Update README.md

Add examples of validation and cleansing scripts and provide detailed explanations of the validation criteria.

Implementation Details

File: backend-container/src/utils/data_validation_and_cleansing.py

import pandas as pd

def check_missing_values(df):
    """
    Check for missing values in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to check.

    Returns:
    pd.Series: A series indicating the number of missing values per column.
    """
    return df.isnull().sum()

def check_duplicates(df):
    """
    Check for duplicate rows in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to check.

    Returns:
    int: The number of duplicate rows.
    """
    return df.duplicated().sum()

def check_data_types(df, expected_types):
    """
    Check if the data types of the DataFrame columns match the expected types.

    Parameters:
    df (pd.DataFrame): The DataFrame to check.
    expected_types (dict): A dictionary with column names as keys and expected data types as values.

    Returns:
    dict: A dictionary indicating whether each column matches the expected type.
    """
    return {col: df[col].dtype == expected_type for col, expected_type in expected_types.items()}

def handle_missing_values(df, strategy='drop', fill_value=None):
    """
    Handle missing values in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to clean.
    strategy (str): The strategy to handle missing values ('drop', 'fill').
    fill_value: The value to fill missing values with (if strategy is 'fill').

    Returns:
    pd.DataFrame: The cleaned DataFrame.
    """
    if strategy == 'drop':
        return df.dropna()
    elif strategy == 'fill':
        return df.fillna(fill_value)
    else:
        raise ValueError("Invalid strategy. Use 'drop' or 'fill'.")

def remove_duplicates(df):
    """
    Remove duplicate rows from the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to clean.

    Returns:
    pd.DataFrame: The cleaned DataFrame.
    """
    return df.drop_duplicates()

# Example usage
if __name__ == "__main__":
    # Sample data
    data = {
        'A': [1, 2, 2, None, 4],
        'B': [5, None, 5, 6, 6]
    }
    df = pd.DataFrame(data)

    # Validate data
    print("Missing values per column:")
    print(check_missing_values(df))

    print("\nNumber of duplicate rows:")
    print(check_duplicates(df))

    expected_types = {'A': 'float64', 'B': 'float64'}
    print("\nData type check:")
    print(check_data_types(df, expected_types))

    # Clean data
    df_cleaned = handle_missing_values(df, strategy='fill', fill_value=0)
    df_cleaned = remove_duplicates(df_cleaned)

    print("\nCleaned DataFrame:")
    print(df_cleaned)

File: README.md

## Data Validation and Cleansing

### Data Validation

Data validation is crucial to ensure the quality and integrity of the data. Below are examples of validation scripts using Python and pandas.

#### Example 1: Checking for Null Values
```python
import pandas as pd

# Load your data into a DataFrame
df = pd.read_csv('data.csv')

# Check for null values
null_values = df.isnull().sum()
print("Null values in each column:\n", null_values)

Example 2: Ensuring Data Types are Correct

# Ensure 'age' column is of integer type
if not pd.api.types.is_integer_dtype(df['age']):
    df['age'] = df['age'].astype(int)

Example 3: Verifying Data Ranges

# Ensure 'age' column values are within a valid range
valid_age_range = (df['age'] >= 0) & (df['age'] <= 120)
if not valid_age_range.all():
    print("Some age values are out of the valid range.")

Data Cleansing

Data cleansing involves correcting or removing inaccurate records from a dataset. Below are examples of cleansing scripts using Python and pandas.

Example 1: Removing Duplicates

# Remove duplicate rows
df = df.drop_duplicates()

Example 2: Handling Missing Values

# Fill missing values with a specific value
df['column_name'].fillna('default_value', inplace=True)

# Alternatively, drop rows with missing values
df.dropna(subset=['column_name'], inplace=True)

Example 3: Correcting Data Formats

# Convert 'date' column to datetime format
df['date'] = pd.to_datetime(df['date'], errors='coerce')

Validation Criteria

  1. Null Values:

    • Criteria: No column should have null values unless explicitly allowed.
    • Importance: Null values can lead to errors in data processing and analysis.
  2. Data Types:

    • Criteria: Each column should have a consistent data type.
    • Importance: Inconsistent data types can cause errors in calculations and data manipulation.
  3. Data Ranges:

    • Criteria: Values in columns should fall within a specified range.
    • Importance: Ensures that the data is realistic and within expected bounds.
  4. Duplicates:

    • Criteria: No duplicate rows should exist in the dataset.
    • Importance: Duplicates can skew analysis results and lead to incorrect conclusions.
  5. Missing Values:

    • Criteria: Handle missing values appropriately by filling or dropping them.
    • Importance: Missing values can affect the accuracy of data analysis and machine learning models.

By following these examples and criteria, you can ensure that your data is clean, consistent, and ready for analysis.

<!--- REPLY FORMAT END -->

[Click here to create a Pull Request with the proposed solution](https://api.codeautopilot.com/create-pr?task=29609&hash=6d69aa0a32fcdc9b44bb836918eaf25f2bbb1b3b9589d60b97853f29e2448a64)

**Files used for this task:**

<details>
  <summary>Changes on backend-container/src/utils/data_validation_and_cleansing.py</summary>

  To address the task of implementing data validation and cleansing routines in the `backend-container/src/utils/data_validation_and_cleansing.py` file, follow these steps:

1. **Define Data Quality Rules and Validation Criteria**:
   - Create functions to check for common data quality issues such as missing values, duplicates, and data type mismatches.

2. **Implement Data Cleansing Operations**:
   - Create functions to handle missing values (e.g., imputation or removal) and remove duplicates.

3. **Document the Code**:
   - Add comments and docstrings to explain the purpose and usage of each function.

Here is a concrete implementation plan for the `data_validation_and_cleansing.py` file:

### Step-by-Step Implementation

1. **Import Necessary Libraries**:
   - Import pandas and any other required libraries.

2. **Define Data Validation Functions**:
   - Create functions to validate data quality rules.

3. **Define Data Cleansing Functions**:
   - Create functions to clean the data based on the validation results.

4. **Example Code**:
   - Provide example usage of the functions.

### Example Implementation

```python
import pandas as pd

def check_missing_values(df):
    """
    Check for missing values in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to check.

    Returns:
    pd.Series: A series indicating the number of missing values per column.
    """
    return df.isnull().sum()

def check_duplicates(df):
    """
    Check for duplicate rows in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to check.

    Returns:
    int: The number of duplicate rows.
    """
    return df.duplicated().sum()

def handle_missing_values(df, strategy='drop', fill_value=None):
    """
    Handle missing values in the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to clean.
    strategy (str): The strategy to handle missing values ('drop', 'fill').
    fill_value: The value to fill missing values with (if strategy is 'fill').

    Returns:
    pd.DataFrame: The cleaned DataFrame.
    """
    if strategy == 'drop':
        return df.dropna()
    elif strategy == 'fill':
        return df.fillna(fill_value)
    else:
        raise ValueError("Invalid strategy. Use 'drop' or 'fill'.")

def remove_duplicates(df):
    """
    Remove duplicate rows from the DataFrame.

    Parameters:
    df (pd.DataFrame): The DataFrame to clean.

    Returns:
    pd.DataFrame: The cleaned DataFrame.
    """
    return df.drop_duplicates()

# Example usage
if __name__ == "__main__":
    # Sample data
    data = {
        'A': [1, 2, 2, None, 4],
        'B': [5, None, 5, 6, 6]
    }
    df = pd.DataFrame(data)

    # Validate data
    print("Missing values per column:")
    print(check_missing_values(df))

    print("\nNumber of duplicate rows:")
    print(check_duplicates(df))

    # Clean data
    df_cleaned = handle_missing_values(df, strategy='fill', fill_value=0)
    df_cleaned = remove_duplicates(df_cleaned)

    print("\nCleaned DataFrame:")
    print(df_cleaned)

Summary

This implementation ensures that the data validation and cleansing routines are well-defined and documented, making it easier for other developers to understand and use the code.

Changes on README.md To address the task of adding examples of validation and cleansing scripts and providing detailed explanations of the validation criteria in the `README.md` file, here is a concrete plan: ### Plan for `README.md` 1. **Add a New Section for Data Validation and Cleansing**: - Create a new section in the `README.md` dedicated to data validation and cleansing. - This section will include examples of scripts and detailed explanations of the validation criteria. 2. **Provide Examples of Validation Scripts**: - Include Python code snippets using pandas that demonstrate how to validate data. - Examples should cover common validation tasks such as checking for null values, ensuring data types are correct, and verifying data ranges. 3. **Provide Examples of Cleansing Scripts**: - Include Python code snippets using pandas that demonstrate how to clean data. - Examples should cover tasks such as removing duplicates, filling or dropping missing values, and correcting data formats. 4. **Explain Validation Criteria**: - Provide detailed explanations of the validation criteria used in the scripts. - Explain why each criterion is important and how it ensures data quality. ### Implementation Here is a proposed addition to the `README.md` file: ```markdown ## Data Validation and Cleansing ### Data Validation Data validation is crucial to ensure the quality and integrity of the data. Below are examples of validation scripts using Python and pandas. #### Example 1: Checking for Null Values ```python import pandas as pd # Load your data into a DataFrame df = pd.read_csv('data.csv') # Check for null values null_values = df.isnull().sum() print("Null values in each column:\n", null_values) ``` #### Example 2: Ensuring Data Types are Correct ```python # Ensure 'age' column is of integer type if not pd.api.types.is_integer_dtype(df['age']): df['age'] = df['age'].astype(int) ``` #### Example 3: Verifying Data Ranges ```python # Ensure 'age' column values are within a valid range valid_age_range = (df['age'] >= 0) & (df['age'] <= 120) if not valid_age_range.all(): print("Some age values are out of the valid range.") ``` ### Data Cleansing Data cleansing involves correcting or removing inaccurate records from a dataset. Below are examples of cleansing scripts using Python and pandas. #### Example 1: Removing Duplicates ```python # Remove duplicate rows df = df.drop_duplicates() ``` #### Example 2: Handling Missing Values ```python # Fill missing values with a specific value df['column_name'].fillna('default_value', inplace=True) # Alternatively, drop rows with missing values df.dropna(subset=['column_name'], inplace=True) ``` #### Example 3: Correcting Data Formats ```python # Convert 'date' column to datetime format df['date'] = pd.to_datetime(df['date'], errors='coerce') ``` ### Validation Criteria 1. **Null Values**: - **Criteria**: No column should have null values unless explicitly allowed. - **Importance**: Null values can lead to errors in data processing and analysis. 2. **Data Types**: - **Criteria**: Each column should have a consistent data type. - **Importance**: Inconsistent data types can cause errors in calculations and data manipulation. 3. **Data Ranges**: - **Criteria**: Values in columns should fall within a specified range. - **Importance**: Ensures that the data is realistic and within expected bounds. 4. **Duplicates**: - **Criteria**: No duplicate rows should exist in the dataset. - **Importance**: Duplicates can skew analysis results and lead to incorrect conclusions. 5. **Missing Values**: - **Criteria**: Handle missing values appropriately by filling or dropping them. - **Importance**: Missing values can affect the accuracy of data analysis and machine learning models. By following these examples and criteria, you can ensure that your data is clean, consistent, and ready for analysis. ``` This addition to the `README.md` will provide clear guidance on how to implement data validation and cleansing routines, complete with practical examples and detailed explanations of the validation criteria.