LucasAlegre / sumo-rl

Reinforcement Learning environments for Traffic Signal Control with SUMO. Compatible with Gymnasium, PettingZoo, and popular RL libraries.
https://lucasalegre.github.io/sumo-rl
MIT License
746 stars 201 forks source link

ObservationFunction changes not applied #164

Closed TGW795 closed 1 year ago

TGW795 commented 1 year ago

Hi.

I've been trying to writing a code to experiment with MARL using sumo-rl.parallel_env() and making my own ObservationFunction, but any changes I made do not apply. It was stated in README that we can use our original ObservationFunction by defining it in observations.py and passing it to the environment constructor, and I followed this flow. Is there anything I am doing wrong? (I'm using the example code of PettingZoo Multi-Agent API)

Thank you.

LucasAlegre commented 1 year ago

Hi,

Can you share your code?

TGW795 commented 1 year ago

Sure. This is my code and changes. (I've been checking the behavior of several observation values, and I've not written about iteration part.)

from .traffic_signal import TrafficSignal

class ObservationFunction: """Abstract base class for observation functions."""

def __init__(self, ts: TrafficSignal):
    """Initialize observation function."""
    self.ts = ts

@abstractmethod
def __call__(self):
    """Subclasses must override this method."""
    phase_id = [1 if self.ts.green_phase == i else 0 for i in range(self.ts.num_green_phases)]
    observation = np.array(phase_id, dtype=np.float32)
    return observation

@abstractmethod
def observation_space(self):
    """Subclasses must override this method."""
    return spaces.Box(
        low=np.zeros(self.ts.num_green_phases, dtype=np.float32),
        high=np.ones(self.ts.num_green_phases, dtype=np.float32),

class DefaultObservationFunction(ObservationFunction): """Default observation function for traffic signals."""

def __init__(self, ts: TrafficSignal):
    """Initialize default observation function."""
    super().__init__(ts)

def __call__(self) -> np.ndarray:
    """Return the default observation."""
    phase_id = [1 if self.ts.green_phase == i else 0 for i in range(self.ts.num_green_phases)]  # one-hot encoding
    min_green = [0 if self.ts.time_since_last_phase_change < self.ts.min_green + self.ts.yellow_time else 1]
    density = self.ts.get_lanes_density()
    queue = self.ts.get_lanes_queue()
    observation = np.array(phase_id + min_green + density + queue, dtype=np.float32)
    return observation

def observation_space(self) -> spaces.Box:
    """Return the observation space."""
    return spaces.Box(
        low=np.zeros(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
        high=np.ones(self.ts.num_green_phases + 1 + 2 * len(self.ts.lanes), dtype=np.float32),
    )

- sumo_rl/environment/env.py(#L99)
    observation_class: ObservationFunction = ObservationFunction,


I thought that we would obtain only phase_id by these modifications, but in fact, I got values defined in DefaultObservationFunction. (I've checked this issue by running a code same as an example of PettingZoo Multi-Agent API.)
LucasAlegre commented 1 year ago

ObservationFunction is an abstract class, you should not modify it. You have to create a new class that implements the abstract methods:

class MyObservationFunction(ObservationFunction):

    def __init__(self, ts: TrafficSignal):
        self.ts = ts

    def __call__(self):
        phase_id = [1 if self.ts.green_phase == i else 0 for i in range(self.ts.num_green_phases)]
        observation = np.array(phase_id, dtype=np.float32)
        return observation

    def observation_space(self):
        return spaces.Box(
            low=np.zeros(self.ts.num_green_phases, dtype=np.float32),
            high=np.ones(self.ts.num_green_phases, dtype=np.float32),

# In your experiment file:
env = sumo_rl.env(..., observation_class=MyObservationFunction)
TGW795 commented 1 year ago

It worked! Thank you! This was just an elementary mistake on my part :)