🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.
parser.add_argument("--use_media_placement_augmentation", action="store_true")
parser.add_argument("--offline", action="store_true")
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--logging_steps", type=int, default=100, help="log loss every n steps")
# Sum of gradient optimization batch size
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
help="path to huggingface model or model identifier from local path or huggingface.co",
default=None,
)
parser.add_argument(
"--load_from_original_checkpoint",
type=str,
help="path to openflamingo provided checkpoint, in .pt format",
default=None,
)
parser.add_argument(
"--resume_from_checkpoint",
action="store_true",
)
parser.add_argument(
"--overwrite_checkpoint",
action="store_true",
)
parser.add_argument(
"--delete_previous_checkpoint",
action="store_true",
help="delete previous checkpoint when saving new checkpoint",
)
parser.add_argument(
"--multi_instruct_path",
type=str,
help="path to multi_instruct dataset, this should be a glob pattern such as vision_language_examples.tsv",
)
parser.add_argument(
"--images_path",
type=str,
help="path to images_path dataset, this should be a glob pattern such as vision_language_examples.tsv",
)
parser.add_argument(
"--train_config_path",
type=str,
help="path to train_config_path dataset, this should be a glob pattern such as vision_language_examples.tsv",
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--learning_rate", default=1e-4, type=float)
parser.add_argument(
"--lr_scheduler",
default="constant",
type=str,
help="constant, linear, or cosine",
)
parser.add_argument("--loss_multiplier_multi_instruct", type=float, default=1.0)
We may need to update them in our next PR.
e.g.