Lyken17 / pytorch-OpCounter

Count the MACs / FLOPs of your PyTorch model.
MIT License
4.9k stars 528 forks source link

F.conv2d #180

Closed Lucien66 closed 2 years ago

Lucien66 commented 2 years ago

In my network structure, I adopt a dynamic structure through F.conv2d. Should I define the rules of F.conv2d myself

Lyken17 commented 2 years ago

Can you share a code example?

Lucien66 commented 2 years ago
class Dynamic_conv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=1, dilation=1, groups=1, if_bias=True, K=5, init_weight=False):
        super(Dynamic_conv2d, self).__init__()
        assert in_planes % groups == 0
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.if_bias = if_bias
        self.K = K

        self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes//groups, kernel_size, kernel_size), requires_grad=True)
        if self.if_bias:
            self.bias = nn.Parameter(torch.Tensor(K, out_planes), requires_grad=True)
        else:
            self.bias = None
        if init_weight:
            self._initialize_weights()

    def _initialize_weights(self):
        for i in range(self.K):
            nn.init.kaiming_uniform_(self.weight[i])
            if self.if_bias:
                nn.init.constant_(self.bias[i], 0)

    def forward(self, inputs):
        x = inputs['x']
        softmax_attention = inputs['weights']
        batch_size, in_planes, height, width = x.size()
        x = x.contiguous().view(1, -1, height, width)
        weight = self.weight.view(self.K, -1)

        aggregate_weight = torch.mm(softmax_attention, weight).view(-1, self.in_planes, self.kernel_size, self.kernel_size)
        if self.bias is not None:
            aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1)
            output = F.conv2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding,
                              dilation=self.dilation, groups=self.groups*batch_size)
        else:
            output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
                              dilation=self.dilation, groups=self.groups * batch_size)

        output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))
        return output

inputs['weights'] come from the output of other networks

Lyken17 commented 2 years ago

THOP currently does not register counting rule for functions, it only supports defining rules for nn.Modules

You may want to check the an example of matmul https://github.com/Lyken17/pytorch-OpCounter/blob/d6d8ec033b973c931f1ded6dbd637a82c6247906/thop/vision/basic_hooks.py#L140

and its registration here https://github.com/Lyken17/pytorch-OpCounter/blob/master/thop/profile.py#L53