Closed silvandeleemput closed 5 months ago
/test
sample:
idc_version: 17.0
data:
- SeriesInstanceUID: 1.3.6.1.4.1.5962.99.1.279243577.1019802107.1640956783417.2.0
aws_url: s3://idc-open-data/64960f35-b3c7-4874-8837-0ec5691e3b63/*
path: dicom
reference:
url: https://github.com/MHubAI/models/files/15390723/gc_wsi_bgseg_output.zip
/review
Review requested. See initial PR comment for caveats.
/test
sample:
idc_version: 17.0
data:
- SeriesInstanceUID: 1.3.6.1.4.1.5962.99.1.279243577.1019802107.1640956783417.2.0
aws_url: s3://idc-open-data/64960f35-b3c7-4874-8837-0ec5691e3b63/*
path: dicom
reference:
url: https://github.com/MHubAI/models/files/15501333/gc_wsi_bgseg_output.zip
@LennyN95 Regarding the results:
description: file size is smaller than reference (349980!=349988)
This can surely be the case. small differences are expected due to GPU differences. This is a bit of an edge case due to not being able to convert this to DicomSeg yet for WSI. You can use the ASAP viewer (https://github.com/computationalpathologygroup/ASAP/releases/tag/ASAP-2.2-(Nightly)) to visually inspect and compare the Tiff files.
This PR adds the WSI background/tissue segmentation model from GC to Mhub. GitHub Repo: https://github.com/DIAGNijmegen/pathology-tissue-background-segmentation-processor GC page: https://grand-challenge.org/algorithms/tissue-background-segmenation/
Algorithm I/O
Input:
Output:
Caveats