MHubAI / models

Stores the MHub models dockerfiles and scripts.
MIT License
8 stars 16 forks source link

BAMF Lung and FDG-Avid Tumor #86

Open jithenece opened 4 months ago

jithenece commented 4 months ago

Pretrained model for 3D semantic image segmentation of the FDG-avid lesions from PT/CT scans

jithenece commented 4 months ago
sample:
  idc_version: Version 5: Updated 2020/12/22
  data:
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
    aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
    path: case_study1/ct
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
    aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
    path: case_study1/pt

reference:
  url: https://drive.google.com/file/d/1jcujIoSvYG0Owps8nZVBBbjSGnCk7Wdx/view?usp=sharing
jithenece commented 4 months ago

screenshots.zip

Added screenshots

jithenece commented 4 months ago

@LennyN95 could someone review this so that i can do similar fixes for other PRs and submit?

jithenece commented 3 months ago

/review

@LennyN95 Please review and let me know for more changes.

jithenece commented 3 months ago

/test

sample:
  idc_version: Version 5: Updated 2020/12/22
  data:
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
    aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
    path: 'case_study1/ct'
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
    aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
    path: 'case_study1/pt'

reference:
  url: https://drive.google.com/file/d/1MGe1dR22GF-oF7BwQ4bE3Oq-9KBnohku
jithenece commented 3 months ago

/test

sample:
  idc_version: "Data Release 5.0 December 22, 2020"
  data:
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
    aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
    path: 'case_study1/ct'
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
    aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
    path: 'case_study1/pt'

reference:
  url: https://drive.google.com/file/d/1MGe1dR22GF-oF7BwQ4bE3Oq-9KBnohku/view?usp=sharing
jithenece commented 2 months ago

/test

attaching segmentation output.zip

sample:
  idc_version: 15.0
  data:
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.322501480363502116767369539775
    aws_url: s3://idc-open-data/7d19e1ee-f2c9-4158-a6e2-d093468e393b/*
    path: case1/ct
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.329094085186214039017114090511
    aws_url: s3://idc-open-data/c39ec1fc-f5d3-4685-9077-dafd79bc5970/*
    path: case1/pt

reference:
  url: https://github.com/user-attachments/files/16797384/output.zip

Test Results (24.08.29_15.15.30_AkoraywFNq) ```yaml id: 02819301-0b3b-4324-9723-77207b8708d6 date: '2024-08-29 16:21:07' checked_files: - file: bamf_pet_ct_lung_tumor.seg.dcm path: /app/test/src/case1/bamf_pet_ct_lung_tumor.seg.dcm checks: - checker: DicomsegContentCheck notes: - label: Segment Count description: The number of segments identified in the inspected dicomseg file. info: 2 findings: - label: Dice Score Difference description: Dice score between reference and test image subpath: 'segment #1' info: 0.975907953098239 summary: files_missing: 0 files_extra: 0 checks: DicomsegContentCheck: files: 1 findings: Dice Score Difference: 1 conclusion: false ```
jithenece commented 2 months ago

/test

attaching segmentation output.zip

sample:
  idc_version: 15.0
  data:
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.322501480363502116767369539775
    aws_url: s3://idc-open-data/7d19e1ee-f2c9-4158-a6e2-d093468e393b/*
    path: case1/ct
  - SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.329094085186214039017114090511
    aws_url: s3://idc-open-data/c39ec1fc-f5d3-4685-9077-dafd79bc5970/*
    path: case1/pt

reference:
  url: https://github.com/user-attachments/files/16927593/output.zip
LennyN95 commented 2 months ago

@jithenece the test results suggest there is a quite high difference (DiceScore), could you elaborate on this?

Please note, we updated our base image. All mhub dependencies are now installed in a virtual environment under /app/.venv running Python 3.11. Python, virtual environment and dependencies are now managed with uv. If required, you can create custom virtual environments, e.g., uv venv -p 3.8 .venv38 and use uv pip install -p .venv38 packge-name to install dependencies and uv run -p .venv3.8 python script.py to run a python script.

We also simplified our test routine. Sample and reference data now have to be uploaded to Zenodo and provided in a mhub.tom file at the project root. The process how to create and provide these sample data is explained in the updated testing phase article of our documentation. Under doi.org/10.5281/zenodo.13785615 we provide sample data as a reference.