Open X02cinnamondirty opened 8 months ago
evaluate.predictions_sequence_module( ... best_model, ... sdata=sd_test, ... seq_var="ohe_seq", ... target_vars="qseqid_x", ... batch_size=128, ... gpus=1, ... in_memory=True, ... name="LTRidentity", ... version="0.75", ... file_label="test", ... prefix=f"LTRidentity_", ... transforms={"ohe_seq": lambda x: x.swapaxes(1, 2)}, ... num_workers=63 ... ) Loading ohe_seq and ['qseqid_x'] into memory GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs Predicting DataLoader 0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 70.29it/s]Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/eugene/evaluate/_predict.py", line 146, in predictions_sequence_module preds = predictions( File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/eugene/evaluate/_predict.py", line 62, in predictions ps = np.concatenate(predictor.predict(model, dataloader), axis=0) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in predict return call._call_and_handle_interrupt( File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/call.py", line 44, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 903, in _predict_impl results = self._run(model, ckpt_path=ckpt_path) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 989, in _run results = self._run_stage() File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1030, in _run_stage return self.predict_loop.run() File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py", line 182, in _decorator return loop_run(self, *args, **kwargs) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/loops/prediction_loop.py", line 128, in run return self.on_run_end() File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/loops/prediction_loop.py", line 200, in on_run_end results = self._on_predict_epoch_end() File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/loops/prediction_loop.py", line 357, in _on_predict_epoch_end call._call_callback_hooks(trainer, "on_predict_epoch_end") File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/trainer/call.py", line 208, in _call_callback_hooks fn(trainer, trainer.lightning_module, *args, **kwargs) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pytorch_lightning/callbacks/prediction_writer.py", line 156, in on_predict_epoch_end self.write_on_epoch_end(trainer, pl_module, trainer.predict_loop.predictions, epoch_batch_indices) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/eugene/evaluate/_utils.py", line 20, in write_on_epoch_end pred_df = pd.DataFrame(data=outputs, columns=pred_cols + target_cols) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pandas/core/frame.py", line 721, in __init__ mgr = ndarray_to_mgr( File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 349, in ndarray_to_mgr _check_values_indices_shape_match(values, index, columns) File "/home/xiongzx/.conda/envs/eugene/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 420, in _check_values_indices_shape_match **raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}") ValueError: Shape of passed values is (2274, 10), indices imply (2274, 18)**
my output_dim is 9
Can you provide the output of sd_test["qseqid_x"].values.shape?
sd_test["qseqid_x"].values.shape
my output_dim is 9