Open luckyboylch opened 6 years ago
减1这个操作是仿照论文里的样子,使得输出维度和高层特征维度相同,而tdm结构的并没有找到源码。我们按照我们认为合理的方式实现的,即对较小的高层特征图没有采用tdm结构。使用tdm结构的层输出特征维度仿照论文和低层特征维度相同。所以有了这样的差别。
xubo@ubuntu:~/run/mxnet-dssd-master$ python demo.py
Traceback (most recent call last):
File "demo.py", line 153, in
def construct_dssd_deconv_layer .......... concat_conv = deconvolution_module(from_layer,conv,num_filters[::-1][k-1],2,k) anti_layers[k] = concat_conv if use_perdict_module[::-1][k]>1: dssd_from_layers.append(prediction_module(concat_conv,num_filters[::-1][k-1])) else : dssd_from_layers.append(concat_conv) return dssd_from_layers[::-1]
def construct_topdown_upsample_layer(from_layers, num_filters): ........ concat_conv = topdown_upsample(from_layer,conv,num_filters[::-1][k],2,k) anti_layers[k] = concat_conv tdm_from_layers.append(concat_conv) return tdm_from_layers[::-1]