Get the data from the API, for example, https://api.zbmath.org/document/6383667, and convert it to a generic XML format. The example item might look like that
<?xml version="1.0" encoding="UTF-8" ?>
<root>
<result>
<biographic_references/>
<contributors>
<authors>
<aliases/>
<checked>1</checked>
<codes>maynard.james</codes>
<name>Maynard, James</name>
</authors>
<author_references/>
<editors/>
</contributors>
<document_type>journal article</document_type>
<editorial_contributions>
<reviewer>
<author_code>siaulys.jonas</author_code>
<reviewer_id>11807</reviewer_id>
<name>Jonas Šiaulys</name>
<sign>Jonas Šiaulys (Vilnius)</sign>
</reviewer>
<text>The prime \(k\)-tuples and small gaps between prime numbers are considered. Using a refinement of the Goldston-Pintz-Yildirim sieve method [\textit{D. A. Goldston} et al., Ann. Math. (2) 170, No. 2, 819--862 (2009; Zbl 1207.11096)] the author proves, for instance, the following estimates
\[
\liminf_{n\to\infty}\,(p_{n+m}-p_n)\ll m^3\text{{e}}^{4m}, \quad \liminf_{n\to\infty}\,(p_{n+1}-p_n)\leq 600
\]
with an absolute constant in sign \(\ll\). Here \(m\) is a natural number, and \(p_{\,l}\) denote the \(l\)-th prime number.</text>
<contribution_type>review</contribution_type>
</editorial_contributions>
<id>6383667</id>
<keywords>prime number</keywords>
<keywords>small gap</keywords>
<keywords>sieve method</keywords>
<keywords>\(k\)-tuples conjecture</keywords>
<keywords>admissible set</keywords>
<keywords>Selberg sieve</keywords>
<keywords>symmetric polynomial</keywords>
<keywords>symmetric matrix</keywords>
<language>
<languages>English</languages>
<addition/>
</language>
<links>
<identifier>10.4007/annals.2015.181.1.7</identifier>
<type>doi</type>
<url/>
</links>
<links>
<identifier>1311.4600</identifier>
<type>arxiv</type>
<url/>
</links>
<msc>
<code>11N05</code>
<scheme>msc2020</scheme>
<text>Distribution of primes</text>
</msc>
<msc>
<code>11N36</code>
<scheme>msc2020</scheme>
<text>Applications of sieve methods</text>
</msc>
<references>
<doi/>
<position>1</position>
<text>P. D. T. A. Elliott and H. Halberstam, ''A conjecture in prime number theory,'' in Symposia Mathematica, Vol. IV, London: Academic Press, 1970, pp. 59-72.</text>
<zbmath>
<author_codes>elliott.peter-d-t-a</author_codes>
<author_codes>halberstam.heini</author_codes>
<document_id>3377327</document_id>
<msc>11N35</msc>
<msc>11N13</msc>
<prefix>Zbl</prefix>
<series_id>0</series_id>
<year>1970</year>
</zbmath>
</references>
<references>
<doi>10.2307/1971450</doi>
<position>2</position>
<text>J. Friedlander and A. Granville, ''Limitations to the equi-distribution of primes. I,'' Ann. of Math., vol. 129, iss. 2, pp. 363-382, 1989.</text>
<zbmath>
<author_codes>friedlander.john-b</author_codes>
<author_codes>granville.andrew-j</author_codes>
<document_id>4097497</document_id>
<msc>11N05</msc>
<msc>11N13</msc>
<msc>11N35</msc>
<prefix>Zbl</prefix>
<series_id>2531</series_id>
<year>1989</year>
</zbmath>
</references>
<references>
<doi>10.1112/plms/pdn046</doi>
<position>3</position>
<text>D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yildirim, ''Small gaps between products of two primes,'' Proc. Lond. Math. Soc., vol. 98, iss. 3, pp. 741-774, 2009.</text>
<zbmath>
<author_codes>graham.sidney-w</author_codes>
<author_codes>yildirim.cem-yalcin</author_codes>
<author_codes>goldston.daniel-alan</author_codes>
<author_codes>pintz.janos</author_codes>
<document_id>5551831</document_id>
<msc>11N25</msc>
<msc>11N36</msc>
<prefix>Zbl</prefix>
<series_id>628</series_id>
<year>2009</year>
</zbmath>
</references>
<references>
<doi>10.7169/facm/1229442618</doi>
<position>4</position>
<text>D. A. Goldston, J. Pintz, and C. Y. Yildirim, ''Primes in tuples. III. On the difference \(p_{n+\nu}-p_n\),'' Funct. Approx. Comment. Math., vol. 35, pp. 79-89, 2006.</text>
<zbmath>
<author_codes>yildirim.cem-yalcin</author_codes>
<author_codes>pintz.janos</author_codes>
<author_codes>goldston.daniel-alan</author_codes>
<document_id>5135166</document_id>
<msc>11N05</msc>
<msc>11N13</msc>
<prefix>Zbl</prefix>
<series_id>423</series_id>
<year>2006</year>
</zbmath>
</references>
<references>
<doi>10.4007/annals.2009.170.819</doi>
<position>5</position>
<text>D. A. Goldston, J. Pintz, and C. Y. Yildirim, ''Primes in tuples. I,'' Ann. of Math., vol. 170, iss. 2, pp. 819-862, 2009.</text>
<zbmath>
<author_codes>yildirim.cem-yalcin</author_codes>
<author_codes>pintz.janos</author_codes>
<author_codes>goldston.daniel-alan</author_codes>
<document_id>5610431</document_id>
<msc>11N05</msc>
<msc>11N36</msc>
<msc>11N13</msc>
<prefix>Zbl</prefix>
<series_id>2531</series_id>
<year>2009</year>
</zbmath>
</references>
<references>
<doi>10.1112/plms/pdm010</doi>
<position>6</position>
<text>D. A. Goldston and C. Y. Yildirim, ''Higher correlations of divisor sums related to primes. III. Small gaps between primes,'' Proc. Lond. Math. Soc., vol. 95, iss. 3, pp. 653-686, 2007.</text>
<zbmath>
<author_codes>yildirim.cem-yalcin</author_codes>
<author_codes>goldston.daniel-alan</author_codes>
<document_id>5170700</document_id>
<msc>11N05</msc>
<msc>11N37</msc>
<prefix>Zbl</prefix>
<series_id>628</series_id>
<year>2007</year>
</zbmath>
</references>
<references>
<doi/>
<position>7</position>
<text>D. H. J. Polymath, New equidistribution estimates of Zhang type, and bounded gaps between primes.</text>
<zbmath>
<author_codes>polymath.d-h-j</author_codes>
<document_id>6587992</document_id>
<msc>11N35</msc>
<msc>11N05</msc>
<prefix>Zbl</prefix>
<series_id>8474</series_id>
<year>2014</year>
</zbmath>
</references>
<references>
<doi/>
<position>8</position>
<text>A. Selberg, Collected Papers. Vol. II, New York: Springer-Verlag, 1991.</text>
<zbmath>
<author_codes>selberg.atle</author_codes>
<document_id>195021</document_id>
<msc>11-03</msc>
<msc>01A75</msc>
<msc>32-03</msc>
<msc>11M06</msc>
<msc>11M41</msc>
<msc>11N35</msc>
<msc>11N36</msc>
<msc>11F72</msc>
<msc>32N05</msc>
<msc>32N15</msc>
<prefix>Zbl</prefix>
<series_id>0</series_id>
<year>1991</year>
</zbmath>
</references>
<references>
<doi>10.4007/annals.2014.179.3.7</doi>
<position>9</position>
<text>Y. Zhang, ''Bounded gaps between primes,'' Ann. of Math., vol. 179, iss. 3, pp. 1121-1174, 2014.</text>
<zbmath>
<author_codes>zhang.yitang.1</author_codes>
<document_id>6302171</document_id>
<msc>11N05</msc>
<msc>11N13</msc>
<msc>11N35</msc>
<msc>11N36</msc>
<msc>11L07</msc>
<prefix>Zbl</prefix>
<series_id>2531</series_id>
<year>2014</year>
</zbmath>
</references>
<source>
<book/>
<pages>383-413</pages>
<series>
<acronym/>
<issn>
<number>0003-486X</number>
<type>print</type>
</issn>
<issn>
<number>1939-8980</number>
<type>electronic</type>
</issn>
<issue>1</issue>
<issue_id>339578</issue_id>
<parallel_title/>
<part/>
<publisher>Princeton University, Mathematics Department, Princeton, NJ</publisher>
<series_id>2531</series_id>
<short_title>Ann. Math. (2)</short_title>
<title>Annals of Mathematics. Second Series</title>
<volume>181</volume>
<year>2015</year>
</series>
<source>Ann. Math. (2) 181, No. 1, 383-413 (2015).</source>
</source>
<states>
<node>s</node>
<node>item with single author</node>
</states>
<states>
<node>r</node>
<node>item has references</node>
</states>
<states>
<node>c</node>
<node>is cited</node>
</states>
<title>
<addition/>
<original/>
<subtitle/>
<title>Small gaps between primes</title>
</title>
<year>2015</year>
<zbmath_url>https://zbmath.org/6383667</zbmath_url>
<data_source>
<biographic_references>ELASTIC</biographic_references>
<contributors>ELASTIC</contributors>
<document_type>ELASTIC</document_type>
<editorial_contributions>ELASTIC</editorial_contributions>
<id>ELASTIC</id>
<keywords>ELASTIC</keywords>
<language>ELASTIC</language>
<links>ELASTIC</links>
<msc>ELASTIC</msc>
<references>ELASTIC</references>
<states>ELASTIC</states>
<title>ELASTIC</title>
<year>ELASTIC</year>
</data_source>
</result>
<status>
<execution>successful request</execution>
<execution_bool>true</execution_bool>
<internal_code>ok</internal_code>
<query_execution_time_in_seconds>0.04320859909057617</query_execution_time_in_seconds>
<status_code>200</status_code>
<time_stamp>2024-01-08 15:25:14.541364</time_stamp>
</status>
</root>
Get the data from the API, for example, https://api.zbmath.org/document/6383667, and convert it to a generic XML format. The example item might look like that