Open shivamtawari opened 2 months ago
I'm missing the full error log (those "2 frames" that you have there). Without it I can't say exactly what the problem is. Having said that, you can use use_ctfidf=False
to solve your problem.
Hi, I forgot to mention the complete error log. Here it is:
NotFittedError Traceback (most recent call last)
<ipython-input-24-5238a0008058> in <cell line: 1>()
----> 1 hierarchical_topics_merged = merged_model.hierarchical_topics(docs_3)
2 frames
/usr/local/lib/python3.10/dist-packages/bertopic/_bertopic.py in hierarchical_topics(self, docs, use_ctfidf, linkage_function, distance_function)
1101 # and will be removed in 1.2. Please use get_feature_names_out instead.
1102 if version.parse(sklearn_version) >= version.parse("1.0.0"):
-> 1103 words = self.vectorizer_model.get_feature_names_out()
1104 else:
1105 words = self.vectorizer_model.get_feature_names()
/usr/local/lib/python3.10/dist-packages/sklearn/feature_extraction/text.py in get_feature_names_out(self, input_features)
1483 Transformed feature names.
1484 """
-> 1485 self._check_vocabulary()
1486 return np.asarray(
1487 [t for t, i in sorted(self.vocabulary_.items(), key=itemgetter(1))],
/usr/local/lib/python3.10/dist-packages/sklearn/feature_extraction/text.py in _check_vocabulary(self)
506 self._validate_vocabulary()
507 if not self.fixed_vocabulary_:
--> 508 raise NotFittedError("Vocabulary not fitted or provided")
509
510 if len(self.vocabulary_) == 0:
NotFittedError: Vocabulary not fitted or provided
Ah, it seems that it truly needs a fitted vectorizer in order to run this model. Hmmm, the only thing that could solve is by running .update_topics
with the documents of both models to recreate a vectorizer model before doing the hierarchical topic modeling.
Have you searched existing issues? 🔎
Desribe the bug
Hi @MaartenGr I am trying to create visualization of hierarchical topic modeling on two topic models merged using .merge_models.
It produces the following error:
How do I visualize merged models?
Thanks!
BERTopic Version
v0.16.3