Open HashmatShadab opened 1 year ago
kindly provide an update on this when you get the time. And if you can specify the arguments used to reproduce results in Table using the pre-trained weights.
Apologies for late reply. Yes this is correct!
Here is an example script to evaluate ViT-B (b=19) against 32x32 patches (2% pixels):
python src/main.py \
--dataset imagenet \
--data /tmp \
--arch deit_base_k19 \
--out-dir OUTDIR \
--exp-name demo \
--batch-size 128 \
--adv-train 0 \
--freeze-level -1 \
--resume \
--eval-only 1 \
--certify \
--certify-out-dir OUTDIR_CERT \
--certify-mode col \
--certify-ablation-size 19 \
--certify-patch-size 32
Hi
Can you please verify the adversarial patch size used for evaluating ImageNet trained models (b=19) in Table 1 of paper: 1% pixels: 23x23 2% pixels: 32x32 3% pixels: 39x39