Open liw1st opened 7 months ago
It looks like you have the wrong config file, there are no fork or bowl classes in the VG150 dataset. Try checking all your paths in path_catalog.py and your config file.
I made a new code for a quick webcam demo here, can you try it out and tell me if it works?
It looks like you have the wrong config file, there are no fork or bowl classes in the VG150 dataset. Try checking all your paths in path_catalog.py and your config file.
I made a new code for a quick webcam demo here, can you try it out and tell me if it works?
Thank you for your reply. I checked the path_catalog.py and config file. The VG-SGG-with-attri.h5
, VG-SGG-dicts-with-attri.json
and image_data.json
are from KaihuaTang. Are they wrong?
Besides, what's the use of zeroshot_file
and informative_file
? If they are important, where to download them?
I will try the webcam demo later.
When I tested the webcam demo, the following error has occurred:
Traceback (most recent call last):
File "/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py", line 59, in
When I tested the webcam demo, the following error has occurred: Traceback (most recent call last): File "/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py", line 59, in main(config_path, dict_file, weights) File "/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py", line 23, in main img, graph = model.predict(frame, visu=True) File "/media/how/data2/CODES/SGG-Benchmark-main/demo/demo_model.py", line 84, in predict predictions = self.model(img_list, targets) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(*input, kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/detector/generalized_rcnn.py", line 53, in forward x, result, detector_losses = self.roi_heads(features, proposals, targets, logger) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(*input, *kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/roi_heads.py", line 25, in forward x, detections, loss_box = self.box(features, proposals, targets) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/box_head/box_head.py", line 53, in forward proposals = [target.copy_with_fields(["labels"]) for target in targets] #, "attributes" TypeError: 'NoneType' object is not iterable
If you are testing in sgdet mode, you have to change the argument MODEL.ROI_RELATION_HEAD.USE_GT_BOX and USE_GT_OBJECT_LABEL to False in your .yaml config file or it won't work.
You don't need the zeroshot_file or informative_file, those are for another research project of mine, don't bother.
I just made a small push to fix this issue and some others in the code, you can try to pull and reinstall with pip install .
to run the latest version.
When I tested the webcam demo, the following error has occurred: Traceback (most recent call last): File "/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py", line 59, in main(config_path, dict_file, weights) File "/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py", line 23, in main img, graph = model.predict(frame, visu=True) File "/media/how/data2/CODES/SGG-Benchmark-main/demo/demo_model.py", line 84, in predict predictions = self.model(img_list, targets) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(*input, kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/detector/generalized_rcnn.py", line 53, in forward x, result, detector_losses = self.roi_heads(features, proposals, targets, logger) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(*input, *kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/roi_heads.py", line 25, in forward x, detections, loss_box = self.box(features, proposals, targets) File "/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/box_head/box_head.py", line 53, in forward proposals = [target.copy_with_fields(["labels"]) for target in targets] #, "attributes" TypeError: 'NoneType' object is not iterable
If you are testing in sgdet mode, you have to change the argument MODEL.ROI_RELATION_HEAD.USE_GT_BOX and USE_GT_OBJECT_LABEL to False in your .yaml config file or it won't work.
You don't need the zeroshot_file or informative_file, those are for another research project of mine, don't bother.
I'm testing in sgdet mode, and the argument MODEL.ROI_RELATION_HEAD.USE_GT_BOX and USE_GT_OBJECT_LABEL are false. But the result is still wrong (just like the visualizations above). I will try the latest version.
@liw1st Did you manage to get good results ?
当我测试网络摄像头演示时,出现了以下错误:回溯(最近一次调用最后一次):文件“/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py”,第 59 行,在 main(config_path、dict_file、weights)中文件“/media/how/data2/CODES/SGG-Benchmark-main/demo/webcam_demo.py”,第 23 行,在 main img 中,graph = model.predict(frame,visu=True)文件“/media/how/data2/CODES/SGG-Benchmark-main/demo/demo_model.py”,第 84 行,在 predict 中预测 = self.model(img_list,targets)文件“/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py”,第 1194 行,在 _call_impl 中返回 forward_call(*input,kwargs)文件“/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/detector/generalized_rcnn.py”,第 53 行,在前向 x 中,结果,detector_losses = self.roi_heads(features、proposals、targets、logger)文件“/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py”,第 1194 行,在 _call_impl 中返回 forward_call(*input,*kwargs)文件“/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/roi_heads.py”,第 25 行,在前向 x 中,检测,loss_box = self.box(features、proposals、targets)文件“/home/how/anaconda3/envs/sgbm2/lib/python3.8/site-packages/torch/nn/modules/module.py”,第 1194 行,在 _call_impl 中返回 forward_call(input,kwargs)文件“/media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/modeling/roi_heads/box_head/box_head.py”,第 53 行,在前向提案中 = [target.copy_with_fields([“labels”])for target in goals] #,“attributes”TypeError:'NoneType'对象不可迭代
如果您在 sgdet 模式下进行测试,则必须在 .yaml 配置文件中将参数 MODEL.ROI_RELATION_HEAD.USE_GT_BOX 和 USE_GT_OBJECT_LABEL 更改为 False,否则它将不起作用。 您不需要 zeroshot_file 或 informative_file,它们是用于我的另一个研究项目的,不用费心了。
我在 sgdet 模式下测试,参数 MODEL.ROI_RELATION_HEAD.USE_GT_BOX 和 USE_GT_OBJECT_LABEL 为 false。但结果仍然错误(就像上面的可视化一样)。我会尝试最新版本。
您好!看到您的回复,我觉得您应该是中国人。我是山东大学研一新生。我有一些关于这个项目复现的问题想向您请教,我是sgg初学者,想和您进行交流。我的邮箱是1339241893@qq.com,我的微信是:XC-992997,期待得到您的回复,希望与您进行交流学习!
When I tested sgdet on custom images, the results seemed to be wrong. I used this command to test :
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "/media/how/data2/CODES/SGG-Benchmark-main/configs/VG150/baseline/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE TDE MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /media/how/data2/CODES/SGG-Benchmark-main/glove MODEL.PRETRAINED_DETECTOR_CKPT /media/how/data2/CODES/SGG-Benchmark-main/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /media/how/data2/CODES/SGG-Benchmark-main/checkpoints/upload_causal_motif_sgdet TEST.CUSTUM_EVAL True TEST.CUSTUM_PATH /media/how/data2/CODES/SGG-Benchmark-main/custom_test/custom_images_coco DETECTED_SGG_DIR /media/how/data2/CODES/SGG-Benchmark-main/custom_test/detected_sgg
.the following is the cfg information: DATALOADER: ASPECT_RATIO_GROUPING: True NUM_WORKERS: 0 SIZE_DIVISIBILITY: 32 DATASETS: NAME: TEST: ('VG_stanford_filtered_with_attribute_test',) TO_TEST: TRAIN: ('VG_stanford_filtered_with_attribute_train',) VAL: ('VG_stanford_filtered_with_attribute_val',) DETECTED_SGG_DIR: /media/how/data2/CODES/SGG-Benchmark-main/custom_test/detected_sgg DTYPE: float16 GLOVE_DIR: /media/how/data2/CODES/SGG-Benchmark-main/glove INPUT: BRIGHTNESS: 0.0 CONTRAST: 0.0 FLIP_PROB_TRAIN: 0.5 HUE: 0.0 MAX_SIZE_TEST: 1000 MAX_SIZE_TRAIN: 1000 MIN_SIZE_TEST: 600 MIN_SIZE_TRAIN: 600 PADDING: False PIXEL_MEAN: [102.9801, 115.9465, 122.7717] PIXEL_STD: [1.0, 1.0, 1.0] SATURATION: 0.0 TO_BGR255: True VERTICAL_FLIP_PROB_TRAIN: 0.0 METRIC_TO_TRACK: mR MODEL: ATTRIBUTE_ON: False BACKBONE: EXTRA_CONFIG: FREEZE: False FREEZE_CONV_BODY_AT: 2 NMS_THRESH: 0.7 TYPE: R-101-FPN BOX_HEAD: True CLS_AGNOSTIC_BBOX_REG: False DEVICE: cuda FBNET: ARCH: default ARCH_DEF: BN_TYPE: bn DET_HEAD_BLOCKS: [] DET_HEAD_LAST_SCALE: 1.0 DET_HEAD_STRIDE: 0 DW_CONV_SKIP_BN: True DW_CONV_SKIP_RELU: True KPTS_HEAD_BLOCKS: [] KPTS_HEAD_LAST_SCALE: 0.0 KPTS_HEAD_STRIDE: 0 MASK_HEAD_BLOCKS: [] MASK_HEAD_LAST_SCALE: 0.0 MASK_HEAD_STRIDE: 0 RPN_BN_TYPE: RPN_HEAD_BLOCKS: 0 SCALE_FACTOR: 1.0 WIDTH_DIVISOR: 1 FLIP_AUG: False FPN: USE_GN: False USE_RELU: False GROUP_NORM: DIM_PER_GP: -1 EPSILON: 1e-05 NUM_GROUPS: 32 MASK_ON: False META_ARCHITECTURE: GeneralizedRCNN PRETRAINED_DETECTOR_CKPT: /media/how/data2/CODES/SGG-Benchmark-main/checkpoints/pretrained_faster_rcnn/model_final.pth RELATION_ON: True RESNETS: BACKBONE_OUT_CHANNELS: 256 DEFORMABLE_GROUPS: 1 NUM_GROUPS: 32 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STAGE_WITH_DCN: (False, False, False, False) STEM_FUNC: StemWithFixedBatchNorm STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: False TRANS_FUNC: BottleneckWithFixedBatchNorm WIDTH_PER_GROUP: 8 WITH_MODULATED_DCN: False RETINANET: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDES: (8, 16, 32, 64, 128) ASPECT_RATIOS: (0.5, 1.0, 2.0) BBOX_REG_BETA: 0.11 BBOX_REG_WEIGHT: 4.0 BG_IOU_THRESHOLD: 0.4 FG_IOU_THRESHOLD: 0.5 INFERENCE_TH: 0.05 LOSS_ALPHA: 0.25 LOSS_GAMMA: 2.0 NMS_TH: 0.4 NUM_CLASSES: 81 NUM_CONVS: 4 OCTAVE: 2.0 PRE_NMS_TOP_N: 1000 PRIOR_PROB: 0.01 SCALES_PER_OCTAVE: 3 STRADDLE_THRESH: 0 USE_C5: True RETINANET_ON: False ROI_ATTRIBUTE_HEAD: ATTRIBUTE_BGFG_RATIO: 3 ATTRIBUTE_BGFG_SAMPLE: True ATTRIBUTE_LOSS_WEIGHT: 1.0 FEATURE_EXTRACTOR: FPN2MLPFeatureExtractor MAX_ATTRIBUTES: 10 NUM_ATTRIBUTES: 201 POS_WEIGHT: 50.0 PREDICTOR: FPNPredictor SHARE_BOX_FEATURE_EXTRACTOR: True USE_BINARY_LOSS: True ROI_BOX_HEAD: CONV_HEAD_DIM: 256 DILATION: 1 FEATURE_EXTRACTOR: FPN2MLPFeatureExtractor MLP_HEAD_DIM: 4096 NUM_CLASSES: 151 NUM_STACKED_CONVS: 4 POOLER_RESOLUTION: 7 POOLER_SAMPLING_RATIO: 2 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) PREDICTOR: FPNPredictor USE_GN: False ROI_HEADS: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) BG_IOU_THRESHOLD: 0.3 DETECTIONS_PER_IMG: 40 FG_IOU_THRESHOLD: 0.5 NMS: 0.3 NMS_FILTER_DUPLICATES: True POSITIVE_FRACTION: 0.5 POST_NMS_PER_CLS_TOPN: 300 SCORE_THRESH: 0.01 USE_FPN: True ROI_MASK_HEAD: CONV_LAYERS: (256, 256, 256, 256) DILATION: 1 FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor MLP_HEAD_DIM: 1024 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) POSTPROCESS_MASKS: False POSTPROCESS_MASKS_THRESHOLD: 0.5 PREDICTOR: MaskRCNNC4Predictor RESOLUTION: 14 SHARE_BOX_FEATURE_EXTRACTOR: True USE_GN: False ROI_RELATION_HEAD: ADD_GTBOX_TO_PROPOSAL_IN_TRAIN: True BATCH_SIZE_PER_IMAGE: 1024 CAUSAL: CONTEXT_LAYER: motifs EFFECT_ANALYSIS: True EFFECT_TYPE: TDE FUSION_TYPE: sum SEPARATE_SPATIAL: False SPATIAL_FOR_VISION: True CLASSIFIER: linear CONTEXT_DROPOUT_RATE: 0.2 CONTEXT_HIDDEN_DIM: 512 CONTEXT_OBJ_LAYER: 1 CONTEXT_POOLING_DIM: 4096 CONTEXT_REL_LAYER: 1 EMBED_DIM: 200 FEATURE_EXTRACTOR: RelationFeatureExtractor LABEL_SMOOTHING_LOSS: False NUM_CLASSES: 51 NUM_SAMPLE_PER_GT_REL: 4 POOLING_ALL_LEVELS: True POSITIVE_FRACTION: 0.25 PREDICTOR: CausalAnalysisPredictor PREDICT_USE_VISION: True REL_PROP: [0.01858, 0.00057, 0.00051, 0.00109, 0.0015, 0.00489, 0.00432, 0.02913, 0.00245, 0.00121, 0.00404, 0.0011, 0.00132, 0.00172, 5e-05, 0.00242, 0.0005, 0.00048, 0.00208, 0.15608, 0.0265, 0.06091, 0.009, 0.00183, 0.00225, 0.0009, 0.00028, 0.00077, 0.04844, 0.08645, 0.31621, 0.00088, 0.00301, 0.00042, 0.00186, 0.001, 0.00027, 0.01012, 0.0001, 0.01286, 0.00647, 0.00084, 0.01077, 0.00132, 0.00069, 0.00376, 0.00214, 0.11424, 0.01205, 0.02958] REQUIRE_BOX_OVERLAP: False TRANSFORMER: DROPOUT_RATE: 0.1 INNER_DIM: 2048 KEY_DIM: 64 NUM_HEAD: 8 OBJ_LAYER: 4 REL_LAYER: 2 VAL_DIM: 64 USE_FREQUENCY_BIAS: True USE_GT_BOX: False USE_GT_OBJECT_LABEL: False RPN: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDE: (4, 8, 16, 32, 64) ASPECT_RATIOS: (0.23232838, 0.63365731, 1.28478321, 3.15089189) BATCH_SIZE_PER_IMAGE: 256 BG_IOU_THRESHOLD: 0.3 FG_IOU_THRESHOLD: 0.7 FPN_POST_NMS_PER_BATCH: False FPN_POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TRAIN: 1000 MIN_SIZE: 0 POSITIVE_FRACTION: 0.5 POST_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TRAIN: 1000 PRE_NMS_TOP_N_TEST: 6000 PRE_NMS_TOP_N_TRAIN: 6000 RPN_HEAD: SingleConvRPNHead RPN_MID_CHANNEL: 256 STRADDLE_THRESH: 0 USE_FPN: True RPN_ONLY: False VGG: VGG16_OUT_CHANNELS: 512 WEIGHT: catalog://ImageNetPretrained/FAIR/20171220/X-101-32x8d YOLO: IMG_SIZE: 640 OUT_CHANNELS: 256 SIZE: yolov8l WEIGHTS: OUTPUT_DIR: /media/how/data2/CODES/SGG-Benchmark-main/checkpoints/upload_causal_motif_sgdet PATHS_CATALOG: /media/how/data2/CODES/SGG-Benchmark-main/sgg_benchmark/config/paths_catalog.py PATHS_DATA: /media/how/data2/CODES/SGG-Benchmark-main/datasets/vg/ SOLVER: BASE_LR: 0.01 BIAS_LR_FACTOR: 1 CHECKPOINT_PERIOD: 2000 CLIP_NORM: 5.0 GAMMA: 0.1 GRAD_NORM_CLIP: 5.0 IMS_PER_BATCH: 16 MAX_EPOCH: 100 MAX_ITER: 40000 MOMENTUM: 0.9 PRE_VAL: True PRINT_GRAD_FREQ: 4000 SCHEDULE: COOLDOWN: 0 FACTOR: 0.1 MAX_DECAY_STEP: 3 PATIENCE: 2 THRESHOLD: 0.001 TYPE: WarmupReduceLROnPlateau STEPS: (10000, 16000) TO_VAL: True UPDATE_SCHEDULE_DURING_LOAD: False VAL_PERIOD: 2000 WARMUP_FACTOR: 0.1 WARMUP_ITERS: 500 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0.0 TEST: ALLOW_LOAD_FROM_CACHE: False BBOX_AUG: ENABLED: False H_FLIP: False MAX_SIZE: 4000 SCALES: () SCALE_H_FLIP: False CUSTUM_EVAL: True CUSTUM_PATH: /media/how/data2/CODES/SGG-Benchmark-main/custom_test/custom_images_coco DETECTIONS_PER_IMG: 100 EXPECTED_RESULTS: [] EXPECTED_RESULTS_SIGMA_TOL: 4 IMS_PER_BATCH: 1 INFORMATIVE: False RELATION: IOU_THRESHOLD: 0.5 LATER_NMS_PREDICTION_THRES: 0.5 MULTIPLE_PREDS: False REQUIRE_OVERLAP: False SYNC_GATHER: True SAVE_PROPOSALS: False
Here are the visualizations: What's the problem?