Open moontreegy opened 6 months ago
As a quick fix please try to install and call a BSgenome.UCSC.hg19 package first:
The package could be fetched on https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html . You can download it and install with R CMD BSgenome.Hsapiens.UCSC.hg19_1.4.3.tar.gz
etc. Then use library(BSgenome.Hsapiens.UCSC.hg19)
before running the EpiTrace_Convergence code.
We would plan to fix this in the next cycle.
As a quick fix please try to install and call a BSgenome.UCSC.hg19 package first:
The package could be fetched on https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html . You can download it and install with
R CMD BSgenome.Hsapiens.UCSC.hg19_1.4.3.tar.gz
etc. Then uselibrary(BSgenome.Hsapiens.UCSC.hg19)
before running the EpiTrace_Convergence code.We would plan to fix this in the next cycle.
I used library(BSgenome.Hsapiens.UCSC.hg19)
and library(BSgenome.Mmusculus.UCSC.mm10)
, but it still shows the same error.
Below is my env.
R version 4.2.2 (2022-10-31)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /opt/conda/lib/libopenblasp-r0.3.21.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel grid stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] ChIPseeker_1.34.1 rhdf5_2.42.0
[3] SummarizedExperiment_1.28.0 Biobase_2.58.0
[5] MatrixGenerics_1.10.0 Rcpp_1.0.11
[7] matrixStats_1.2.0 data.table_1.14.8
[9] stringr_1.5.1 plyr_1.8.9
[11] magrittr_2.0.3 gtable_0.3.4
[13] gtools_3.9.5 gridExtra_2.3
[15] ArchR_1.0.2 patchwork_1.1.3
[17] ggtree_3.6.0 SeuratObject_4.1.3
[19] Seurat_4.3.0 EpiTrace_0.0.1.3
[21] Matrix_1.5-3 ggplot2_3.4.4
[23] openxlsx_4.2.5.2 reshape2_1.4.4
[25] readr_2.1.4 tidyr_1.3.0
[27] dplyr_1.1.4 BSgenome.Hsapiens.UCSC.hg19_1.4.3
[29] BSgenome_1.66.3 rtracklayer_1.58.0
[31] Biostrings_2.66.0 XVector_0.38.0
[33] GenomicRanges_1.50.2 GenomeInfoDb_1.34.9
[35] IRanges_2.32.0 S4Vectors_0.36.2
[37] BiocGenerics_0.44.0
loaded via a namespace (and not attached):
[1] rappdirs_0.3.3
[2] pbdZMQ_0.3-9
[3] scattermore_0.8
[4] easyLift_0.2.1
[5] bit64_4.0.5
[6] knitr_1.42
[7] irlba_2.3.5.1
[8] DelayedArray_0.24.0
[9] rpart_4.1.19
[10] KEGGREST_1.38.0
[11] RCurl_1.98-1.13
[12] doParallel_1.0.17
[13] generics_0.1.3
[14] GenomicFeatures_1.50.4
[15] preprocessCore_1.60.2
[16] cowplot_1.1.1
[17] RSQLite_2.3.4
[18] shadowtext_0.1.2
[19] RANN_2.6.1
[20] future_1.32.0
[21] enrichplot_1.18.0
[22] bit_4.0.5
[23] tzdb_0.4.0
[24] xml2_1.3.3
[25] spatstat.data_3.0-1
[26] httpuv_1.6.9
[27] viridis_0.6.2
[28] xfun_0.38
[29] hms_1.1.3
[30] evaluate_0.20
[31] promises_1.2.0.1
[32] fansi_1.0.6
[33] restfulr_0.0.15
[34] progress_1.2.3
[35] caTools_1.18.2
[36] dbplyr_2.3.2
[37] igraph_1.4.2
[38] DBI_1.2.0
[39] htmlwidgets_1.6.2
[40] spatstat.geom_3.1-0
[41] purrr_1.0.2
[42] ellipsis_0.3.2
[43] backports_1.4.1
[44] biomaRt_2.54.1
[45] deldir_1.0-6
[46] vctrs_0.6.5
[47] ROCR_1.0-11
[48] abind_1.4-5
[49] cachem_1.0.8
[50] withr_2.5.2
[51] ggforce_0.4.1
[52] HDO.db_0.99.1
[53] progressr_0.13.0
[54] vroom_1.6.5
[55] checkmate_2.1.0
[56] sctransform_0.3.5
[57] GenomicAlignments_1.34.1
[58] treeio_1.22.0
[59] prettyunits_1.2.0
[60] goftest_1.2-3
[61] DOSE_3.24.0
[62] cluster_2.1.4
[63] ape_5.7
[64] IRdisplay_1.1
[65] lazyeval_0.2.2
[66] crayon_1.5.2
[67] spatstat.explore_3.1-0
[68] pkgconfig_2.0.3
[69] tweenr_2.0.2
[70] nlme_3.1-162
[71] nnet_7.3-18
[72] rlang_1.1.2
[73] globals_0.16.2
[74] lifecycle_1.0.4
[75] miniUI_0.1.1.1
[76] filelock_1.0.2
[77] BiocFileCache_2.6.0
[78] polyclip_1.10-4
[79] lmtest_0.9-40
[80] aplot_0.1.10
[81] IRkernel_1.3.2
[82] boot_1.3-28.1
[83] Rhdf5lib_1.20.0
[84] zoo_1.8-12
[85] base64enc_0.1-3
[86] ggridges_0.5.4
[87] png_0.1-8
[88] viridisLite_0.4.2
[89] rjson_0.2.21
[90] bitops_1.0-7
[91] KernSmooth_2.23-20
[92] rhdf5filters_1.10.0
[93] blob_1.2.4
[94] qvalue_2.30.0
[95] parallelly_1.35.0
[96] spatstat.random_3.1-4
[97] gridGraphics_0.5-1
[98] scales_1.3.0
[99] memoise_2.0.1
[100] ica_1.0-3
[101] gplots_3.1.3
[102] zlibbioc_1.44.0
[103] scatterpie_0.1.8
[104] compiler_4.2.2
[105] BiocIO_1.8.0
[106] RColorBrewer_1.1-3
[107] plotrix_3.8-2
[108] fitdistrplus_1.1-8
[109] Rsamtools_2.14.0
[110] cli_3.6.2
[111] listenv_0.9.0
[112] pbapply_1.7-0
[113] htmlTable_2.4.1
[114] Formula_1.2-5
[115] MASS_7.3-58.2
[116] WGCNA_1.72-1
[117] tidyselect_1.2.0
[118] stringi_1.8.3
[119] GOSemSim_2.24.0
[120] yaml_2.3.7
[121] ggrepel_0.9.3
[122] fastmatch_1.1-3
[123] tools_4.2.2
[124] future.apply_1.10.0
[125] rstudioapi_0.14
[126] uuid_1.1-0
[127] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[128] foreach_1.5.2
[129] foreign_0.8-84
[130] farver_2.1.1
[131] plyranges_1.18.0
[132] Rtsne_0.16
[133] ggraph_2.1.0
[134] digest_0.6.33
[135] shiny_1.7.4
[136] later_1.3.0
[137] RcppAnnoy_0.0.20
[138] httr_1.4.7
[139] AnnotationDbi_1.60.2
[140] colorspace_2.1-0
[141] XML_3.99-0.14
[142] fs_1.6.3
[143] tensor_1.5
[144] reticulate_1.28
[145] splines_4.2.2
[146] uwot_0.1.14
[147] yulab.utils_0.1.2
[148] RcppRoll_0.3.0
[149] tidytree_0.4.2
[150] spatstat.utils_3.0-2
[151] graphlayouts_0.8.4
[152] sp_1.6-0
[153] ggplotify_0.1.2
[154] plotly_4.10.1
[155] xtable_1.8-4
[156] jsonlite_1.8.8
[157] tidygraph_1.2.3
[158] dynamicTreeCut_1.63-1
[159] ggfun_0.0.9
[160] R6_2.5.1
[161] Hmisc_5.0-1
[162] pillar_1.9.0
[163] htmltools_0.5.5
[164] mime_0.12
[165] nnls_1.4
[166] glue_1.6.2
[167] fastmap_1.1.1
[168] BiocParallel_1.32.6
[169] codetools_0.2-19
[170] fgsea_1.24.0
[171] Signac_1.9.0
[172] utf8_1.2.4
[173] lattice_0.20-45
[174] spatstat.sparse_3.0-1
[175] tibble_3.2.1
[176] curl_5.2.0
[177] leiden_0.4.3
[178] zip_2.2.2
[179] GO.db_3.16.0
[180] survival_3.5-3
[181] rmarkdown_2.21
[182] repr_1.1.6
[183] munsell_0.5.0
[184] fastcluster_1.2.3
[185] GenomeInfoDbData_1.2.9
[186] iterators_1.0.14
[187] impute_1.72.0
Initial ideas (untested since we have the connection here...) could be:
ref_genome = "hg19"
into ref_genome = ref_genome
seqinfo
seqinfo
in EpiTrace as
EpiTraceAge_Convergence(peakSet = init_gr, matrix = init_mm, ref_genome = seqinfo , clock_gr = mouse_clock_by_MM285, iterative_time = 5, min.cutoff = 0, non_standard_clock = T, qualnum = 10, ncore_lim = 48, mean_error_limit = 0.1)
See if this can handle the problem? It seems to be a known issue in GenomeInfoDb without internet connection such as in : https://github.com/stuart-lab/signac/issues/249.
Hi,
I modified the script EpiTrace.R, generated a mm10 seqInfo using the below code, and replaced the parameters with ref_genome = seqinfo
genomeBuild = "mm10"
genomeStyle = "UCSC"
library(GenomeInfoDb)
bsg <- paste0("BSgenome.Mmusculus.UCSC.", genomeBuild)
if (!require(bsg, character.only=TRUE, quietly=TRUE, warn.conflicts=FALSE)) {
seqinfo <- Seqinfo(genome=genomeBuild)
} else {
seqinfo <- seqinfo(get(bsg))
}
seqlevelsStyle(seqinfo) <- genomeStyle
seqinfo <- keepSeqlevels(seqinfo, value = paste0("chr",c(1:19,"X")))
saveRDS(seqinfo, file = "/data/work/2024-05-15_EpiTrace/seqinfo_mm10_ucsc.rds")
but it shows another error
Error in match(x, table, nomatch = 0L): 'match' requires vector arguments
Traceback:
1. EpiTraceAge_Convergence(peakSet = init_gr, matrix = init_mm,
. ref_genome = seqinfo, clock_gr = mouse_clock_by_MM285, iterative_time = 5,
. min.cutoff = 0, non_standard_clock = T, qualnum = 10, ncore_lim = 48,
. mean_error_limit = 0.1)
2. ref_genome %in% "hg38"
3. ref_genome %in% "hg38"
Could you please assist in testing it without an internet connection?
Many thanks
As a quick fix please try to install and call a BSgenome.UCSC.hg19 package first:
The package could be fetched on https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html . You can download it and install with
R CMD BSgenome.Hsapiens.UCSC.hg19_1.4.3.tar.gz
etc. Then uselibrary(BSgenome.Hsapiens.UCSC.hg19)
before running the EpiTrace_Convergence code.We would plan to fix this in the next cycle.
This also did not resolve the problem for me, which was replicated in the simple bulk ATAC example when running without an internet connection.
Hi,
I encountered a problem when running EpiTraceAge_Convergence in the step 4 of the tutorial. It seems to be caused by some functions attempting to download chromosome information. Given that our server cannot connect to the network, is it possible to pre-fetch the seqinfo object? Could you advise on which code I should modify to load the object?
Thank you in advance.
Below is the traceback: