MarlinFirmware / Marlin

Marlin is an optimized firmware for RepRap 3D printers based on the Arduino platform. Many commercial 3D printers come with Marlin installed. Check with your vendor if you need source code for your specific machine.
https://marlinfw.org
GNU General Public License v3.0
16.33k stars 19.25k forks source link

[Bug] Unstable PID/PWM, sometimes can't heat up even when there's power to spare. #15816

Closed VanessaE closed 4 years ago

VanessaE commented 5 years ago

This is Marlin bugfix-2.0.x branch, commit 61225e68, running on an SKR v1.3.

Description

For a while, I've been having problems with my hotend staying... well... hot. At the beginning of a print, it would maintain its target temperature just fine, but when the print would get to the point where the layer fan turns on, the hotend temperature would drop by several degrees, and often fail to recover. This has forced me to relax the hotend thermal runaway setting a bit (it should still be safe, though, just not ideal).

Such was the case for a print I was doing today. It just didn't want to heat back up once the fan kicked-in.

My layer fan is aimed just below the nozzle, and like almost all layer fans/ducts, the outlet blows a bit onto the nozzle and the bottom of the hotend. Naturally I assumed that this was the issue, so I made a simple "air dam" to put between the fan duct and the bottom of the hotend, blocking the airflow from reaching all but the lowest few millimeters of the nozzle itself.

I ran a second attempt at that print (same g-code), but the air dam didn't seem to do any good; after around half an hour of printing, the hotend temperature had dropped from its target of 230° down to 220°, with heater PWM holding at 127 (or so it said), and with the fan at only 25%.

With that second print still going, I told Pronterface to bump the hotend temperature up to 240°, just to see what would happen, then "came to my senses" after a few seconds, and turned it back down to 230° -- surely it has no hope of getting to 240° anyway, right?

Here's where it gets weird: when I turned the temperature target up and back down, the reported hotend temperature began to rise, and the reported PWM value began to drop. Within maybe 30 seconds, it had stabilized at 230°, and PWM was hovering close to 100. That's right where it was supposed to be to begin with, so it's not like fiddling with the temperature like that should have done anything; it was as if the heater/PID code got "stuck" somehow. I did not notice if it was the initial act of raising the target temperature that did it, or the seconds-later act of lowering it.

As of submitting this issue, that second print has been going completely normally for about three and a half hours, with the temperature remaining as stable as I would expect (within one degree). The print speed, fan speed, flow rate, linear feed rates, enclosure temperature, bed temperature, room temperature, etc. have all remained steady this whole time - that is, the conditions of the printer and its surroundings were the same when the hotend temperature corrected itself as when the fan switched on early in the print, Z position aside. UPDATE: the print completed without incident, and the temperature remained steady for the remainder of the time that I was around to watch it.

Steps to Reproduce

  1. Start a print in PETG, ABS, or something else that'll print decently at 230°, preferably something with a high flow rate and lots of long lines (maybe just a large cube).
  2. While it's going, turn on your layer fan on, at 100%. Maybe add other fans, just so that there's enough air hitting the hotend to quickly drive the heater PWM to 127, but not so much air that the hotend would have no hope of ever recovering.
  3. Let things continue like that while the print proceeds, until temperature settles at its lowest point (this may take a while). Wait a few minutes more.
  4. With the fans still blasting the hotend and the print still going, note the temperature reading, and use your host program to set it to 240°.
  5. Wait a few seconds, then turn it back down to 230°.
  6. Observe as the hotend temperature corrects itself.

    Logically, turning the temperature up and then right back down should have had no effect.

You may need to do this on a 12v machine (and hence 40W heater cartridge), since that's what I use.

Expected behavior: If there's more power to be had, and it's needed, the heater should heat up. :-)

Actual behavior: Something gets confused the hotend stops trying to heat up. :-)

Additional Information

Configuration.h ```c++ /** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * Configuration.h * * Basic settings such as: * * - Type of electronics * - Type of temperature sensor * - Printer geometry * - Endstop configuration * - LCD controller * - Extra features * * Advanced settings can be found in Configuration_adv.h * */ #define CONFIGURATION_H_VERSION 020000 //=========================================================================== //============================= Getting Started ============================= //=========================================================================== /** * Here are some standard links for getting your machine calibrated: * * http://reprap.org/wiki/Calibration * http://youtu.be/wAL9d7FgInk * http://calculator.josefprusa.cz * http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide * http://www.thingiverse.com/thing:5573 * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap * http://www.thingiverse.com/thing:298812 */ //=========================================================================== //============================= DELTA Printer =============================== //=========================================================================== // For a Delta printer start with one of the configuration files in the // config/examples/delta directory and customize for your machine. // //=========================================================================== //============================= SCARA Printer =============================== //=========================================================================== // For a SCARA printer start with the configuration files in // config/examples/SCARA and customize for your machine. // // @section info // Author info of this build printed to the host during boot and M115 #define STRING_CONFIG_H_AUTHOR "bugfix-2.0.x 61225e68" // Who made the changes. //#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes) /** * *** VENDORS PLEASE READ *** * * Marlin allows you to add a custom boot image for Graphical LCDs. * With this option Marlin will first show your custom screen followed * by the standard Marlin logo with version number and web URL. * * We encourage you to take advantage of this new feature and we also * respectfully request that you retain the unmodified Marlin boot screen. */ // Show the Marlin bootscreen on startup. ** ENABLE FOR PRODUCTION ** #define SHOW_BOOTSCREEN // Show the bitmap in Marlin/_Bootscreen.h on startup. //#define SHOW_CUSTOM_BOOTSCREEN // Show the bitmap in Marlin/_Statusscreen.h on the status screen. #define CUSTOM_STATUS_SCREEN_IMAGE // @section machine /** * Select the serial port on the board to use for communication with the host. * This allows the connection of wireless adapters (for instance) to non-default port pins. * Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader. * * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ #define SERIAL_PORT -1 /** * Select a secondary serial port on the board to use for communication with the host. * This allows the connection of wireless adapters (for instance) to non-default port pins. * Serial port -1 is the USB emulated serial port, if available. * * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ //#define SERIAL_PORT_2 -1 /** * This setting determines the communication speed of the printer. * * 250000 works in most cases, but you might try a lower speed if * you commonly experience drop-outs during host printing. * You may try up to 1000000 to speed up SD file transfer. * * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] */ #define BAUDRATE 250000 // Enable the Bluetooth serial interface on AT90USB devices //#define BLUETOOTH // Choose the name from boards.h that matches your setup #ifndef MOTHERBOARD #define MOTHERBOARD BOARD_BIGTREE_SKR_V1_3 #endif // Name displayed in the LCD "Ready" message and Info menu #define CUSTOM_MACHINE_NAME "Prusa i3" // Printer's unique ID, used by some programs to differentiate between machines. // Choose your own or use a service like http://www.uuidgenerator.net/version4 //#define MACHINE_UUID "00000000-0000-0000-0000-000000000000" // @section extruder // This defines the number of extruders // :[1, 2, 3, 4, 5, 6] #define EXTRUDERS 1 // Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc. #define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 // For Cyclops or any "multi-extruder" that shares a single nozzle. //#define SINGLENOZZLE /** * Průša MK2 Single Nozzle Multi-Material Multiplexer, and variants. * * This device allows one stepper driver on a control board to drive * two to eight stepper motors, one at a time, in a manner suitable * for extruders. * * This option only allows the multiplexer to switch on tool-change. * Additional options to configure custom E moves are pending. */ //#define MK2_MULTIPLEXER #if ENABLED(MK2_MULTIPLEXER) // Override the default DIO selector pins here, if needed. // Some pins files may provide defaults for these pins. //#define E_MUX0_PIN 40 // Always Required //#define E_MUX1_PIN 42 // Needed for 3 to 8 inputs //#define E_MUX2_PIN 44 // Needed for 5 to 8 inputs #endif /** * Prusa Multi-Material Unit v2 * * Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails. * Requires EXTRUDERS = 5 * * For additional configuration see Configuration_adv.h */ //#define PRUSA_MMU2 // A dual extruder that uses a single stepper motor //#define SWITCHING_EXTRUDER #if ENABLED(SWITCHING_EXTRUDER) #define SWITCHING_EXTRUDER_SERVO_NR 0 #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3] #if EXTRUDERS > 3 #define SWITCHING_EXTRUDER_E23_SERVO_NR 1 #endif #endif // A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles //#define SWITCHING_NOZZLE #if ENABLED(SWITCHING_NOZZLE) #define SWITCHING_NOZZLE_SERVO_NR 0 //#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second #define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // Angles for E0, E1 (single servo) or lowered/raised (dual servo) #endif /** * Two separate X-carriages with extruders that connect to a moving part * via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN. */ //#define PARKING_EXTRUDER /** * Two separate X-carriages with extruders that connect to a moving part * via a magnetic docking mechanism using movements and no solenoid * * project : https://www.thingiverse.com/thing:3080893 * movements : https://youtu.be/0xCEiG9VS3k * https://youtu.be/Bqbcs0CU2FE */ //#define MAGNETIC_PARKING_EXTRUDER #if EITHER(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER) #define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders #define PARKING_EXTRUDER_GRAB_DISTANCE 1 // (mm) Distance to move beyond the parking point to grab the extruder //#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381 #if ENABLED(PARKING_EXTRUDER) #define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage #define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil #define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // (ms) Delay for magnetic field. No delay if 0 or not defined. //#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381 #elif ENABLED(MAGNETIC_PARKING_EXTRUDER) #define MPE_FAST_SPEED 9000 // (mm/m) Speed for travel before last distance point #define MPE_SLOW_SPEED 4500 // (mm/m) Speed for last distance travel to park and couple #define MPE_TRAVEL_DISTANCE 10 // (mm) Last distance point #define MPE_COMPENSATION 0 // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling #endif #endif /** * Switching Toolhead * * Support for swappable and dockable toolheads, such as * the E3D Tool Changer. Toolheads are locked with a servo. */ //#define SWITCHING_TOOLHEAD /** * Magnetic Switching Toolhead * * Support swappable and dockable toolheads with a magnetic * docking mechanism using movement and no servo. */ //#define MAGNETIC_SWITCHING_TOOLHEAD /** * Electromagnetic Switching Toolhead * * Parking for CoreXY / HBot kinematics. * Toolheads are parked at one edge and held with an electromagnet. * Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4 */ //#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD #if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_POS 235 // (mm) Y position of the toolhead dock #define SWITCHING_TOOLHEAD_Y_SECURITY 10 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_Y_CLEAR 60 // (mm) Minimum distance from dock for unobstructed X axis #define SWITCHING_TOOLHEAD_X_POS { 215, 0 } // (mm) X positions for parking the extruders #if ENABLED(SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_SERVO_NR 2 // Index of the servo connector #define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 } // (degrees) Angles for Lock, Unlock #elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_RELEASE 5 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_X_SECURITY { 90, 150 } // (mm) Security distance X axis (T0,T1) //#define PRIME_BEFORE_REMOVE // Prime the nozzle before release from the dock #if ENABLED(PRIME_BEFORE_REMOVE) #define SWITCHING_TOOLHEAD_PRIME_MM 20 // (mm) Extruder prime length #define SWITCHING_TOOLHEAD_RETRACT_MM 10 // (mm) Retract after priming length #define SWITCHING_TOOLHEAD_PRIME_FEEDRATE 300 // (mm/m) Extruder prime feedrate #define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400 // (mm/m) Extruder retract feedrate #endif #elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Z_HOP 2 // (mm) Z raise for switching #endif #endif /** * "Mixing Extruder" * - Adds G-codes M163 and M164 to set and "commit" the current mix factors. * - Extends the stepping routines to move multiple steppers in proportion to the mix. * - Optional support for Repetier Firmware's 'M164 S' supporting virtual tools. * - This implementation supports up to two mixing extruders. * - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation). */ //#define MIXING_EXTRUDER #if ENABLED(MIXING_EXTRUDER) #define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder #define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164 //#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands //#define GRADIENT_MIX // Support for gradient mixing with M166 and LCD #if ENABLED(GRADIENT_MIX) //#define GRADIENT_VTOOL // Add M166 T to use a V-tool index as a Gradient alias #endif #endif // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder). // For the other hotends it is their distance from the extruder 0 hotend. //#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle //#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle //#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle // @section machine /** * Power Supply Control * * Enable and connect the power supply to the PS_ON_PIN. * Specify whether the power supply is active HIGH or active LOW. */ //#define PSU_CONTROL //#define PSU_NAME "Power Supply" #if ENABLED(PSU_CONTROL) #define PSU_ACTIVE_HIGH false // Set 'false' for ATX (1), 'true' for X-Box (2) //#define PS_DEFAULT_OFF // Keep power off until enabled directly with M80 //#define AUTO_POWER_CONTROL // Enable automatic control of the PS_ON pin #if ENABLED(AUTO_POWER_CONTROL) #define AUTO_POWER_FANS // Turn on PSU if fans need power #define AUTO_POWER_E_FANS #define AUTO_POWER_CONTROLLERFAN #define AUTO_POWER_CHAMBER_FAN //#define AUTO_POWER_E_TEMP 50 // (°C) Turn on PSU over this temperature //#define AUTO_POWER_CHAMBER_TEMP 30 // (°C) Turn on PSU over this temperature #define POWER_TIMEOUT 30 #endif #endif // @section temperature //=========================================================================== //============================= Thermal Settings ============================ //=========================================================================== /** * --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table * * Temperature sensors available: * * -4 : thermocouple with AD8495 * -3 : thermocouple with MAX31855 (only for sensor 0) * -2 : thermocouple with MAX6675 (only for sensor 0) * -1 : thermocouple with AD595 * 0 : not used * 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup) * 331 : (3.3V scaled thermistor 1 table) * 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup) * 3 : Mendel-parts thermistor (4.7k pullup) * 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !! * 5 : 100K thermistor - ATC Semitec 104GT-2/104NT-4-R025H42G (Used in ParCan & J-Head) (4.7k pullup) * 501 : 100K Zonestar (Tronxy X3A) Thermistor * 512 : 100k RPW-Ultra hotend thermistor (4.7k pullup) * 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup) * 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup) * 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup) * 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) * 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup) * 10 : 100k RS thermistor 198-961 (4.7k pullup) * 11 : 100k beta 3950 1% thermistor (4.7k pullup) * 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed) * 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE" * 15 : 100k thermistor calibration for JGAurora A5 hotend * 18 : ATC Semitec 204GT-2 (4.7k pullup) Dagoma.Fr - MKS_Base_DKU001327 * 20 : Pt100 with circuit in the Ultimainboard V2.x * 201 : Pt100 with circuit in Overlord, similar to Ultimainboard V2.x * 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950 * 61 : 100k Formbot / Vivedino 3950 350C thermistor 4.7k pullup * 66 : 4.7M High Temperature thermistor from Dyze Design * 67 : 450C thermistor from SliceEngineering * 70 : the 100K thermistor found in the bq Hephestos 2 * 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor * 99 : 100k thermistor with a 10K pull-up resistor (found on some Wanhao i3 machines) * * 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k. * (but gives greater accuracy and more stable PID) * 51 : 100k thermistor - EPCOS (1k pullup) * 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup) * 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup) * * 1047 : Pt1000 with 4k7 pullup * 1010 : Pt1000 with 1k pullup (non standard) * 147 : Pt100 with 4k7 pullup * 110 : Pt100 with 1k pullup (non standard) * * 1000 : Custom - Specify parameters in Configuration_adv.h * * Use these for Testing or Development purposes. NEVER for production machine. * 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below. * 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below. */ #define TEMP_SENSOR_0 512 #define TEMP_SENSOR_1 0 #define TEMP_SENSOR_2 0 #define TEMP_SENSOR_3 0 #define TEMP_SENSOR_4 0 #define TEMP_SENSOR_5 0 #define TEMP_SENSOR_BED 13 #define TEMP_SENSOR_CHAMBER 0 // Dummy thermistor constant temperature readings, for use with 998 and 999 #define DUMMY_THERMISTOR_998_VALUE 25 #define DUMMY_THERMISTOR_999_VALUE 100 // Use temp sensor 1 as a redundant sensor with sensor 0. If the readings // from the two sensors differ too much the print will be aborted. //#define TEMP_SENSOR_1_AS_REDUNDANT #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10 #define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109 #define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190 #define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target // Below this temperature the heater will be switched off // because it probably indicates a broken thermistor wire. #define HEATER_0_MINTEMP 5 #define HEATER_1_MINTEMP 5 #define HEATER_2_MINTEMP 5 #define HEATER_3_MINTEMP 5 #define HEATER_4_MINTEMP 5 #define HEATER_5_MINTEMP 5 #define BED_MINTEMP 5 // Above this temperature the heater will be switched off. // This can protect components from overheating, but NOT from shorts and failures. // (Use MINTEMP for thermistor short/failure protection.) #define HEATER_0_MAXTEMP 300 #define HEATER_1_MAXTEMP 275 #define HEATER_2_MAXTEMP 275 #define HEATER_3_MAXTEMP 275 #define HEATER_4_MAXTEMP 275 #define HEATER_5_MAXTEMP 275 #define BED_MAXTEMP 150 //=========================================================================== //============================= PID Settings ================================ //=========================================================================== // PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning // Comment the following line to disable PID and enable bang-bang. #define PIDTEMP #define BANG_MAX 255 // Limits current to nozzle while in bang-bang mode; 255=full current #define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current #define PID_K1 0.95 // Smoothing factor within any PID loop #if ENABLED(PIDTEMP) #define PID_EDIT_MENU // Add PID editing to the "Advanced Settings" menu. (~700 bytes of PROGMEM) #define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of PROGMEM) //#define PID_DEBUG // Sends debug data to the serial port. //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders) // Set/get with gcode: M301 E[extruder number, 0-2] #define PID_FUNCTIONAL_RANGE 20 // If the temperature difference between the target temperature and the actual temperature // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // prusa i3 with genuine RPW-Ultra, thermistor type 512 (tune command: M303 S230 C10) #define DEFAULT_Kp 14.14 #define DEFAULT_Ki 0.53 #define DEFAULT_Kd 95.10 // prusa i3 with genuine J-head 11 HiFlow, thermistor type 5 // #define DEFAULT_Kp 15.68 // #define DEFAULT_Ki 0.85 // #define DEFAULT_Kd 72.52 // Ultimaker //#define DEFAULT_Kp 22.2 //#define DEFAULT_Ki 1.08 //#define DEFAULT_Kd 114 // MakerGear //#define DEFAULT_Kp 7.0 //#define DEFAULT_Ki 0.1 //#define DEFAULT_Kd 12 // Mendel Parts V9 on 12V //#define DEFAULT_Kp 63.0 //#define DEFAULT_Ki 2.25 //#define DEFAULT_Kd 440 #endif // PIDTEMP //=========================================================================== //====================== PID > Bed Temperature Control ====================== //=========================================================================== /** * PID Bed Heating * * If this option is enabled set PID constants below. * If this option is disabled, bang-bang will be used and BED_LIMIT_SWITCHING will enable hysteresis. * * The PID frequency will be the same as the extruder PWM. * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz, * which is fine for driving a square wave into a resistive load and does not significantly * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W * heater. If your configuration is significantly different than this and you don't understand * the issues involved, don't use bed PID until someone else verifies that your hardware works. */ #define PIDTEMPBED //#define BED_LIMIT_SWITCHING /** * Max Bed Power * Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis). * When set to any value below 255, enables a form of PWM to the bed that acts like a divider * so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED) */ #define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current #if ENABLED(PIDTEMPBED) //#define MIN_BED_POWER 0 //#define PID_BED_DEBUG // Sends debug data to the serial port. // MK2A heatbed with type-13 beta3950 thermistor (tune command: M303 E-1 C20 S65) #define DEFAULT_bedKp 20 #define DEFAULT_bedKi 3 #define DEFAULT_bedKd 300 //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10) //#define DEFAULT_bedKp 10.00 //#define DEFAULT_bedKi .023 //#define DEFAULT_bedKd 305.4 //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) //from pidautotune //#define DEFAULT_bedKp 97.1 //#define DEFAULT_bedKi 1.41 //#define DEFAULT_bedKd 1675.16 // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles. #endif // PIDTEMPBED // @section extruder /** * Prevent extrusion if the temperature is below EXTRUDE_MINTEMP. * Add M302 to set the minimum extrusion temperature and/or turn * cold extrusion prevention on and off. * * *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! *** */ #define PREVENT_COLD_EXTRUSION #define EXTRUDE_MINTEMP 150 /** * Prevent a single extrusion longer than EXTRUDE_MAXLENGTH. * Note: For Bowden Extruders make this large enough to allow load/unload. */ //#define PREVENT_LENGTHY_EXTRUDE #define EXTRUDE_MAXLENGTH 200 //=========================================================================== //======================== Thermal Runaway Protection ======================= //=========================================================================== /** * Thermal Protection provides additional protection to your printer from damage * and fire. Marlin always includes safe min and max temperature ranges which * protect against a broken or disconnected thermistor wire. * * The issue: If a thermistor falls out, it will report the much lower * temperature of the air in the room, and the the firmware will keep * the heater on. * * If you get "Thermal Runaway" or "Heating failed" errors the * details can be tuned in Configuration_adv.h */ #define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders //#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed #define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber //=========================================================================== //============================= Mechanical Settings ========================= //=========================================================================== // @section machine // Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics // either in the usual order or reversed //#define COREXY //#define COREXZ //#define COREYZ //#define COREYX //#define COREZX //#define COREZY //=========================================================================== //============================== Endstop Settings =========================== //=========================================================================== // @section homing // Specify here all the endstop connectors that are connected to any endstop or probe. // Almost all printers will be using one per axis. Probes will use one or more of the // extra connectors. Leave undefined any used for non-endstop and non-probe purposes. //#define USE_XMIN_PLUG #define USE_YMIN_PLUG #define USE_ZMIN_PLUG #define USE_XMAX_PLUG //#define USE_YMAX_PLUG //#define USE_ZMAX_PLUG // Enable pullup for all endstops to prevent a floating state #define ENDSTOPPULLUPS #if DISABLED(ENDSTOPPULLUPS) // Disable ENDSTOPPULLUPS to set pullups individually //#define ENDSTOPPULLUP_XMAX //#define ENDSTOPPULLUP_YMAX //#define ENDSTOPPULLUP_ZMAX //#define ENDSTOPPULLUP_XMIN //#define ENDSTOPPULLUP_YMIN //#define ENDSTOPPULLUP_ZMIN //#define ENDSTOPPULLUP_ZMIN_PROBE #endif // Enable pulldown for all endstops to prevent a floating state //#define ENDSTOPPULLDOWNS #if DISABLED(ENDSTOPPULLDOWNS) // Disable ENDSTOPPULLDOWNS to set pulldowns individually //#define ENDSTOPPULLDOWN_XMAX //#define ENDSTOPPULLDOWN_YMAX //#define ENDSTOPPULLDOWN_ZMAX //#define ENDSTOPPULLDOWN_XMIN //#define ENDSTOPPULLDOWN_YMIN //#define ENDSTOPPULLDOWN_ZMIN //#define ENDSTOPPULLDOWN_ZMIN_PROBE #endif // Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup). #define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Y_MIN_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop. #define Z_MIN_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop. #define X_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop. #define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Z_MIN_PROBE_ENDSTOP_INVERTING true // Set to true to invert the logic of the probe. /** * Stepper Drivers * * These settings allow Marlin to tune stepper driver timing and enable advanced options for * stepper drivers that support them. You may also override timing options in Configuration_adv.h. * * A4988 is assumed for unspecified drivers. * * Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] */ #define X_DRIVER_TYPE TMC2208 #define Y_DRIVER_TYPE TMC2208 #define Z_DRIVER_TYPE TMC2208 //#define X2_DRIVER_TYPE A4988 //#define Y2_DRIVER_TYPE A4988 //#define Z2_DRIVER_TYPE A4988 //#define Z3_DRIVER_TYPE A4988 #define E0_DRIVER_TYPE TMC2208 //#define E1_DRIVER_TYPE A4988 //#define E2_DRIVER_TYPE A4988 //#define E3_DRIVER_TYPE A4988 //#define E4_DRIVER_TYPE A4988 //#define E5_DRIVER_TYPE A4988 // Enable this feature if all enabled endstop pins are interrupt-capable. // This will remove the need to poll the interrupt pins, saving many CPU cycles. //#define ENDSTOP_INTERRUPTS_FEATURE /** * Endstop Noise Threshold * * Enable if your probe or endstops falsely trigger due to noise. * * - Higher values may affect repeatability or accuracy of some bed probes. * - To fix noise install a 100nF ceramic capacitor inline with the switch. * - This feature is not required for common micro-switches mounted on PCBs * based on the Makerbot design, which already have the 100nF capacitor. * * :[2,3,4,5,6,7] */ //#define ENDSTOP_NOISE_THRESHOLD 2 //============================================================================= //============================== Movement Settings ============================ //============================================================================= // @section motion /** * Default Settings * * These settings can be reset by M502 * * Note that if EEPROM is enabled, saved values will override these. */ /** * With this option each E stepper can have its own factors for the * following movement settings. If fewer factors are given than the * total number of extruders, the last value applies to the rest. */ //#define DISTINCT_E_FACTORS /** * Default Axis Steps Per Unit (steps/mm) * Override with M92 * X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]] */ #define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 783 } /** * Default Max Feed Rate (mm/s) * Override with M203 * X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]] */ #define DEFAULT_MAX_FEEDRATE { 500, 500, 30, 40 } //#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2 #if ENABLED(LIMITED_MAX_FR_EDITING) #define MAX_FEEDRATE_EDIT_VALUES { 600, 600, 10, 50 } // ...or, set your own edit limits #endif /** * Default Max Acceleration (change/s) change = mm/s * (Maximum start speed for accelerated moves) * Override with M201 * X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]] */ #define DEFAULT_MAX_ACCELERATION { 4000, 4000, 250, 3000 } //#define LIMITED_MAX_ACCEL_EDITING // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2 #if ENABLED(LIMITED_MAX_ACCEL_EDITING) #define MAX_ACCEL_EDIT_VALUES { 6000, 6000, 200, 20000 } // ...or, set your own edit limits #endif /** * Default Acceleration (change/s) change = mm/s * Override with M204 * * M204 P Acceleration * M204 R Retract Acceleration * M204 T Travel Acceleration */ #define DEFAULT_ACCELERATION 2000 // X, Y, Z and E acceleration for printing moves #define DEFAULT_RETRACT_ACCELERATION 2000 // E acceleration for retracts #define DEFAULT_TRAVEL_ACCELERATION 2000 // X, Y, Z acceleration for travel (non printing) moves /** * Default Jerk limits (mm/s) * Override with M205 X Y Z E * * "Jerk" specifies the minimum speed change that requires acceleration. * When changing speed and direction, if the difference is less than the * value set here, it may happen instantaneously. */ //#define CLASSIC_JERK #if ENABLED(CLASSIC_JERK) #define DEFAULT_XJERK 10.0 #define DEFAULT_YJERK 10.0 #define DEFAULT_ZJERK 0.3 //#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2 #if ENABLED(LIMITED_JERK_EDITING) #define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits #endif #endif #define DEFAULT_EJERK 10.0 // May be used by Linear Advance /** * Junction Deviation Factor * * See: * https://reprap.org/forum/read.php?1,739819 * http://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html */ #if DISABLED(CLASSIC_JERK) #define JUNCTION_DEVIATION_MM 0.02 // (mm) Distance from real junction edge #endif /** * S-Curve Acceleration * * This option eliminates vibration during printing by fitting a Bézier * curve to move acceleration, producing much smoother direction changes. * * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained */ #define S_CURVE_ACCELERATION //=========================================================================== //============================= Z Probe Options ============================= //=========================================================================== // @section probes // // See http://marlinfw.org/docs/configuration/probes.html // /** * Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN * * Enable this option for a probe connected to the Z Min endstop pin. */ #define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN /** * Z_MIN_PROBE_PIN * * Define this pin if the probe is not connected to Z_MIN_PIN. * If not defined the default pin for the selected MOTHERBOARD * will be used. Most of the time the default is what you want. * * - The simplest option is to use a free endstop connector. * - Use 5V for powered (usually inductive) sensors. * * - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin: * - For simple switches connect... * - normally-closed switches to GND and D32. * - normally-open switches to 5V and D32. * */ //#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default /** * Probe Type * * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc. * Activate one of these to use Auto Bed Leveling below. */ /** * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe. * Use G29 repeatedly, adjusting the Z height at each point with movement commands * or (with LCD_BED_LEVELING) the LCD controller. */ //#define PROBE_MANUALLY //#define MANUAL_PROBE_START_Z 0.2 /** * A Fix-Mounted Probe either doesn't deploy or needs manual deployment. * (e.g., an inductive probe or a nozzle-based probe-switch.) */ #define FIX_MOUNTED_PROBE /** * Z Servo Probe, such as an endstop switch on a rotating arm. */ //#define Z_PROBE_SERVO_NR 0 // Defaults to SERVO 0 connector. //#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles /** * The BLTouch probe uses a Hall effect sensor and emulates a servo. */ //#define BLTOUCH /** * Touch-MI Probe by hotends.fr * * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed. * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position. * * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING, * and a minimum Z_HOMING_HEIGHT of 10. */ //#define TOUCH_MI_PROBE #if ENABLED(TOUCH_MI_PROBE) #define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed //#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu) #endif // A probe that is deployed and stowed with a solenoid pin (SOL1_PIN) //#define SOLENOID_PROBE // A sled-mounted probe like those designed by Charles Bell. //#define Z_PROBE_SLED //#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like. // A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice. //#define RACK_AND_PINION_PROBE #if ENABLED(RACK_AND_PINION_PROBE) #define Z_PROBE_DEPLOY_X X_MIN_POS #define Z_PROBE_RETRACT_X X_MAX_POS #endif // // For Z_PROBE_ALLEN_KEY see the Delta example configurations. // /** * Z Probe to nozzle (X,Y) offset, relative to (0, 0). * * In the following example the X and Y offsets are both positive: * * #define NOZZLE_TO_PROBE_OFFSET { 10, 10, 0 } * * +-- BACK ---+ * | | * L | (+) P | R <-- probe (20,20) * E | | I * F | (-) N (+) | G <-- nozzle (10,10) * T | | H * | (-) | T * | | * O-- FRONT --+ * (0,0) * * Specify a Probe position as { X, Y, Z } */ // X: -left +right, Y: -front +behind, Z: -below +above [relative to the nozzle] // Just leave Z at zero and write the real value to EEPROM with M851 Z-nnn : M500 #define NOZZLE_TO_PROBE_OFFSET { -32, 10, 0 } // Certain types of probes need to stay away from edges #define MIN_PROBE_EDGE 0 // X and Y axis travel speed (mm/m) between probes #define XY_PROBE_SPEED 8000 // Feedrate (mm/m) for the first approach when double-probing (MULTIPLE_PROBING == 2) #define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z // Feedrate (mm/m) for the "accurate" probe of each point #define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 4) /** * Multiple Probing * * You may get improved results by probing 2 or more times. * With EXTRA_PROBING the more atypical reading(s) will be disregarded. * * A total of 2 does fast/slow probes with a weighted average. * A total of 3 or more adds more slow probes, taking the average. */ #define MULTIPLE_PROBING 4 #define EXTRA_PROBING 1 /** * Z probes require clearance when deploying, stowing, and moving between * probe points to avoid hitting the bed and other hardware. * Servo-mounted probes require extra space for the arm to rotate. * Inductive probes need space to keep from triggering early. * * Use these settings to specify the distance (mm) to raise the probe (or * lower the bed). The values set here apply over and above any (negative) * probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD. * Only integer values >= 1 are valid here. * * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle. * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle. */ #define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow #define Z_CLEARANCE_BETWEEN_PROBES 2 // Z Clearance between probe points #define Z_CLEARANCE_MULTI_PROBE 2 // Z Clearance between multiple probes //#define Z_AFTER_PROBING 5 // Z position after probing is done #define Z_PROBE_LOW_POINT -2 // Farthest distance below the trigger-point to go before stopping // For M851 give a range for adjusting the Z probe offset #define Z_PROBE_OFFSET_RANGE_MIN -20 #define Z_PROBE_OFFSET_RANGE_MAX 20 // Enable the M48 repeatability test to test probe accuracy //#define Z_MIN_PROBE_REPEATABILITY_TEST // Before deploy/stow pause for user confirmation //#define PAUSE_BEFORE_DEPLOY_STOW #if ENABLED(PAUSE_BEFORE_DEPLOY_STOW) //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe #endif /** * Enable one or more of the following if probing seems unreliable. * Heaters and/or fans can be disabled during probing to minimize electrical * noise. A delay can also be added to allow noise and vibration to settle. * These options are most useful for the BLTouch probe, but may also improve * readings with inductive probes and piezo sensors. */ //#define PROBING_HEATERS_OFF // Turn heaters off when probing #if ENABLED(PROBING_HEATERS_OFF) //#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy) #endif //#define PROBING_FANS_OFF // Turn fans off when probing //#define PROBING_STEPPERS_OFF // Turn steppers off (unless needed to hold position) when probing //#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // :{ 0:'Low', 1:'High' } #define X_ENABLE_ON 0 #define Y_ENABLE_ON 0 #define Z_ENABLE_ON 0 #define E_ENABLE_ON 0 // For all extruders // Disables axis stepper immediately when it's not being used. // WARNING: When motors turn off there is a chance of losing position accuracy! #define DISABLE_X false #define DISABLE_Y false #define DISABLE_Z false // Warn on display about possibly reduced accuracy //#define DISABLE_REDUCED_ACCURACY_WARNING // @section extruder #define DISABLE_E false // For all extruders #define DISABLE_INACTIVE_EXTRUDER // Keep only the active extruder enabled // @section machine // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. #define INVERT_X_DIR true #define INVERT_Y_DIR false #define INVERT_Z_DIR false // @section extruder // For direct drive extruder v9 set to true, for geared extruder set to false. #define INVERT_E0_DIR true #define INVERT_E1_DIR false #define INVERT_E2_DIR false #define INVERT_E3_DIR false #define INVERT_E4_DIR false #define INVERT_E5_DIR false // @section homing //#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed //#define UNKNOWN_Z_NO_RAISE // Don't raise Z (lower the bed) if Z is "unknown." For beds that fall when Z is powered off. //#define Z_HOMING_HEIGHT 4 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ... // Be sure you have this distance over your Z_MAX_POS in case. // Direction of endstops when homing; 1=MAX, -1=MIN // :[-1,1] #define X_HOME_DIR 1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 // @section machine // The size of the print bed #define X_BED_SIZE 200 #define Y_BED_SIZE 200 // Travel limits (mm) after homing, corresponding to endstop positions. #define X_MIN_POS -14 #define Y_MIN_POS -38 #define Z_MIN_POS 0 #define X_MAX_POS 209 #define Y_MAX_POS 205 #define Z_MAX_POS 195 /** * Software Endstops * * - Prevent moves outside the set machine bounds. * - Individual axes can be disabled, if desired. * - X and Y only apply to Cartesian robots. * - Use 'M211' to set software endstops on/off or report current state */ // Min software endstops constrain movement within minimum coordinate bounds #define MIN_SOFTWARE_ENDSTOPS #if ENABLED(MIN_SOFTWARE_ENDSTOPS) #define MIN_SOFTWARE_ENDSTOP_X #define MIN_SOFTWARE_ENDSTOP_Y #define MIN_SOFTWARE_ENDSTOP_Z #endif // Max software endstops constrain movement within maximum coordinate bounds #define MAX_SOFTWARE_ENDSTOPS #if ENABLED(MAX_SOFTWARE_ENDSTOPS) #define MAX_SOFTWARE_ENDSTOP_X #define MAX_SOFTWARE_ENDSTOP_Y #define MAX_SOFTWARE_ENDSTOP_Z #endif #if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS) //#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD #endif /** * Filament Runout Sensors * Mechanical or opto endstops are used to check for the presence of filament. * * RAMPS-based boards use SERVO3_PIN for the first runout sensor. * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc. * By default the firmware assumes HIGH=FILAMENT PRESENT. */ //#define FILAMENT_RUNOUT_SENSOR #if ENABLED(FILAMENT_RUNOUT_SENSOR) #define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each. #define FIL_RUNOUT_INVERTING false // Set to true to invert the logic of the sensor. #define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins. //#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins. // Set one or more commands to execute on filament runout. // (After 'M412 H' Marlin will ask the host to handle the process.) #define FILAMENT_RUNOUT_SCRIPT "M600" // After a runout is detected, continue printing this length of filament // before executing the runout script. Useful for a sensor at the end of // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead. //#define FILAMENT_RUNOUT_DISTANCE_MM 25 #ifdef FILAMENT_RUNOUT_DISTANCE_MM // Enable this option to use an encoder disc that toggles the runout pin // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM // large enough to avoid false positives.) //#define FILAMENT_MOTION_SENSOR #endif #endif //=========================================================================== //=============================== Bed Leveling ============================== //=========================================================================== // @section calibrate /** * Choose one of the options below to enable G29 Bed Leveling. The parameters * and behavior of G29 will change depending on your selection. * * If using a Probe for Z Homing, enable Z_SAFE_HOMING also! * * - AUTO_BED_LEVELING_3POINT * Probe 3 arbitrary points on the bed (that aren't collinear) * You specify the XY coordinates of all 3 points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_LINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_BILINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a mesh, best for large or uneven beds. * * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling) * A comprehensive bed leveling system combining the features and benefits * of other systems. UBL also includes integrated Mesh Generation, Mesh * Validation and Mesh Editing systems. * * - MESH_BED_LEVELING * Probe a grid manually * The result is a mesh, suitable for large or uneven beds. (See BILINEAR.) * For machines without a probe, Mesh Bed Leveling provides a method to perform * leveling in steps so you can manually adjust the Z height at each grid-point. * With an LCD controller the process is guided step-by-step. */ //#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_LINEAR #define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_UBL //#define MESH_BED_LEVELING /** * Normally G28 leaves leveling disabled on completion. Enable * this option to have G28 restore the prior leveling state. */ #define RESTORE_LEVELING_AFTER_G28 /** * Enable detailed logging of G28, G29, M48, etc. * Turn on with the command 'M111 S32'. * NOTE: Requires a lot of PROGMEM! */ //#define DEBUG_LEVELING_FEATURE #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL) // Gradually reduce leveling correction until a set height is reached, // at which point movement will be level to the machine's XY plane. // The height can be set with M420 Z //#define ENABLE_LEVELING_FADE_HEIGHT // For Cartesian machines, instead of dividing moves on mesh boundaries, // split up moves into short segments like a Delta. This follows the // contours of the bed more closely than edge-to-edge straight moves. #define SEGMENT_LEVELED_MOVES #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one) /** * Enable the G26 Mesh Validation Pattern tool. */ //#define G26_MESH_VALIDATION #if ENABLED(G26_MESH_VALIDATION) #define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle. #define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for the G26 Mesh Validation Tool. #define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for the G26 Mesh Validation Tool. #define MESH_TEST_BED_TEMP 65 // (°C) Default bed temperature for the G26 Mesh Validation Tool. #define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for XY Moves for the G26 Mesh Validation Tool. #endif #endif #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR) // Set the number of grid points per dimension. #define GRID_MAX_POINTS_X 3 #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X // Probe along the Y axis, advancing X after each column //#define PROBE_Y_FIRST #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Beyond the probed grid, continue the implied tilt? // Default is to maintain the height of the nearest edge. #define EXTRAPOLATE_BEYOND_GRID // // Experimental Subdivision of the grid by Catmull-Rom method. // Synthesizes intermediate points to produce a more detailed mesh. // #define ABL_BILINEAR_SUBDIVISION #if ENABLED(ABL_BILINEAR_SUBDIVISION) // Number of subdivisions between probe points #define BILINEAR_SUBDIVISIONS 3 #endif #endif #elif ENABLED(AUTO_BED_LEVELING_UBL) //=========================================================================== //========================= Unified Bed Leveling ============================ //=========================================================================== //#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh #define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X #define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle #define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500 //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used // as the Z-Height correction value. #elif ENABLED(MESH_BED_LEVELING) //=========================================================================== //=================================== Mesh ================================== //=========================================================================== #define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS #endif // BED_LEVELING /** * Add a bed leveling sub-menu for ABL or MBL. * Include a guided procedure if manual probing is enabled. */ //#define LCD_BED_LEVELING #if ENABLED(LCD_BED_LEVELING) #define MESH_EDIT_Z_STEP 0.025 // (mm) Step size while manually probing Z axis. #define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment //#define MESH_EDIT_MENU // Add a menu to edit mesh points #endif // Add a menu item to move between bed corners for manual bed adjustment //#define LEVEL_BED_CORNERS #if ENABLED(LEVEL_BED_CORNERS) #define LEVEL_CORNERS_INSET 30 // (mm) An inset for corner leveling #define LEVEL_CORNERS_Z_HOP 4.0 // (mm) Move nozzle up before moving between corners #define LEVEL_CORNERS_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points //#define LEVEL_CENTER_TOO // Move to the center after the last corner #endif /** * Commands to execute at the end of G29 probing. * Useful to retract or move the Z probe out of the way. */ //#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" // @section homing // The center of the bed is at (X=0, Y=0) //#define BED_CENTER_AT_0_0 // Manually set the home position. Leave these undefined for automatic settings. // For DELTA this is the top-center of the Cartesian print volume. //#define MANUAL_X_HOME_POS 0 //#define MANUAL_Y_HOME_POS 0 //#define MANUAL_Z_HOME_POS 0 // Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area. // // With this feature enabled: // // - Allow Z homing only after X and Y homing AND stepper drivers still enabled. // - If stepper drivers time out, it will need X and Y homing again before Z homing. // - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28). // - Prevent Z homing when the Z probe is outside bed area. // #define Z_SAFE_HOMING #if ENABLED(Z_SAFE_HOMING) #define Z_SAFE_HOMING_X_POINT 177 // X point for Z homing when homing all axes (G28). #define Z_SAFE_HOMING_Y_POINT 20 // Y point for Z homing when homing all axes (G28). #endif // Homing speeds (mm/m) #define HOMING_FEEDRATE_XY 6000 #define HOMING_FEEDRATE_Z 1800 // Validate that endstops are triggered on homing moves #define VALIDATE_HOMING_ENDSTOPS // @section calibrate /** * Bed Skew Compensation * * This feature corrects for misalignment in the XYZ axes. * * Take the following steps to get the bed skew in the XY plane: * 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185) * 2. For XY_DIAG_AC measure the diagonal A to C * 3. For XY_DIAG_BD measure the diagonal B to D * 4. For XY_SIDE_AD measure the edge A to D * * Marlin automatically computes skew factors from these measurements. * Skew factors may also be computed and set manually: * * - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2 * - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD))) * * If desired, follow the same procedure for XZ and YZ. * Use these diagrams for reference: * * Y Z Z * ^ B-------C ^ B-------C ^ B-------C * | / / | / / | / / * | / / | / / | / / * | A-------D | A-------D | A-------D * +-------------->X +-------------->X +-------------->Y * XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR */ #define SKEW_CORRECTION #if ENABLED(SKEW_CORRECTION) // Input all length measurements here: #define XY_DIAG_AC 141.02 #define XY_DIAG_BD 140.71 #define XY_SIDE_AD 99.71 // Or, set the default skew factors directly here // to override the above measurements: #define XY_SKEW_FACTOR 0.0 #define SKEW_CORRECTION_FOR_Z #if ENABLED(SKEW_CORRECTION_FOR_Z) #define XZ_DIAG_AC 141.35 #define XZ_DIAG_BD 141.24 #define YZ_DIAG_AC 141.39 #define YZ_DIAG_BD 140.89 #define YZ_SIDE_AD 99.84 #define XZ_SKEW_FACTOR 0.0 #define YZ_SKEW_FACTOR 0.0 #endif // Enable this option for M852 to set skew at runtime //#define SKEW_CORRECTION_GCODE #endif //============================================================================= //============================= Additional Features =========================== //============================================================================= // @section extras /** * EEPROM * * Persistent storage to preserve configurable settings across reboots. * * M500 - Store settings to EEPROM. * M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes) * M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.) */ #define EEPROM_SETTINGS // Persistent storage with M500 and M501 //#define DISABLE_M503 // Saves ~2700 bytes of PROGMEM. Disable for release! #define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM. #if ENABLED(EEPROM_SETTINGS) //#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors. #endif // // Host Keepalive // // When enabled Marlin will send a busy status message to the host // every couple of seconds when it can't accept commands. // #define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages #define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113. #define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating // // M100 Free Memory Watcher // //#define M100_FREE_MEMORY_WATCHER // Add M100 (Free Memory Watcher) to debug memory usage // // G20/G21 Inch mode support // //#define INCH_MODE_SUPPORT // // M149 Set temperature units support // //#define TEMPERATURE_UNITS_SUPPORT // @section temperature // Preheat Constants #define PREHEAT_1_LABEL "PLA" #define PREHEAT_1_TEMP_HOTEND 180 #define PREHEAT_1_TEMP_BED 65 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_2_LABEL "PETG" #define PREHEAT_2_TEMP_HOTEND 220 #define PREHEAT_2_TEMP_BED 85 #define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_3_LABEL "ABS" #define PREHEAT_3_TEMP_HOTEND 230 #define PREHEAT_3_TEMP_BED 115 #define PREHEAT_3_FAN_SPEED 0 // Value from 0 to 255 /** * Nozzle Park * * Park the nozzle at the given XYZ position on idle or G27. * * The "P" parameter controls the action applied to the Z axis: * * P0 (Default) If Z is below park Z raise the nozzle. * P1 Raise the nozzle always to Z-park height. * P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS. */ #define NOZZLE_PARK_FEATURE #if ENABLED(NOZZLE_PARK_FEATURE) // Specify a park position as { X, Y, Z_raise } #define NOZZLE_PARK_POINT { 50, -30, 10 } #define NOZZLE_PARK_XY_FEEDRATE 200 // (mm/s) X and Y axes feedrate (also used for delta Z axis) #define NOZZLE_PARK_Z_FEEDRATE 20 // (mm/s) Z axis feedrate (not used for delta printers) #endif /** * Clean Nozzle Feature -- EXPERIMENTAL * * Adds the G12 command to perform a nozzle cleaning process. * * Parameters: * P Pattern * S Strokes / Repetitions * T Triangles (P1 only) * * Patterns: * P0 Straight line (default). This process requires a sponge type material * at a fixed bed location. "S" specifies strokes (i.e. back-forth motions) * between the start / end points. * * P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the * number of zig-zag triangles to do. "S" defines the number of strokes. * Zig-zags are done in whichever is the narrower dimension. * For example, "G12 P1 S1 T3" will execute: * * -- * | (X0, Y1) | /\ /\ /\ | (X1, Y1) * | | / \ / \ / \ | * A | | / \ / \ / \ | * | | / \ / \ / \ | * | (X0, Y0) | / \/ \/ \ | (X1, Y0) * -- +--------------------------------+ * |________|_________|_________| * T1 T2 T3 * * P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE. * "R" specifies the radius. "S" specifies the stroke count. * Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT. * * Caveats: The ending Z should be the same as starting Z. * Attention: EXPERIMENTAL. G-code arguments may change. * */ //#define NOZZLE_CLEAN_FEATURE #if ENABLED(NOZZLE_CLEAN_FEATURE) // Default number of pattern repetitions #define NOZZLE_CLEAN_STROKES 12 // Default number of triangles #define NOZZLE_CLEAN_TRIANGLES 3 // Specify positions as { X, Y, Z } #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1) } #define NOZZLE_CLEAN_END_POINT { 100, 60, (Z_MIN_POS + 1) } // Circular pattern radius #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5 // Circular pattern circle fragments number #define NOZZLE_CLEAN_CIRCLE_FN 10 // Middle point of circle #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT // Move the nozzle to the initial position after cleaning #define NOZZLE_CLEAN_GOBACK // Enable for a purge/clean station that's always at the gantry height (thus no Z move) //#define NOZZLE_CLEAN_NO_Z #endif /** * Print Job Timer * * Automatically start and stop the print job timer on M104/M109/M190. * * M104 (hotend, no wait) - high temp = none, low temp = stop timer * M109 (hotend, wait) - high temp = start timer, low temp = stop timer * M190 (bed, wait) - high temp = start timer, low temp = none * * The timer can also be controlled with the following commands: * * M75 - Start the print job timer * M76 - Pause the print job timer * M77 - Stop the print job timer */ #define PRINTJOB_TIMER_AUTOSTART /** * Print Counter * * Track statistical data such as: * * - Total print jobs * - Total successful print jobs * - Total failed print jobs * - Total time printing * * View the current statistics with M78. */ //#define PRINTCOUNTER //============================================================================= //============================= LCD and SD support ============================ //============================================================================= // @section lcd /** * LCD LANGUAGE * * Select the language to display on the LCD. These languages are available: * * en, an, bg, ca, cz, da, de, el, el_gr, es, eu, fi, fr, gl, hr, it, jp_kana, * ko_KR, nl, pl, pt, pt_br, ru, sk, tr, uk, vi, zh_CN, zh_TW, test * * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek', 'el_gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ru':'Russian', 'sk':'Slovak', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)', 'test':'TEST' } */ #define LCD_LANGUAGE en /** * LCD Character Set * * Note: This option is NOT applicable to Graphical Displays. * * All character-based LCDs provide ASCII plus one of these * language extensions: * * - JAPANESE ... the most common * - WESTERN ... with more accented characters * - CYRILLIC ... for the Russian language * * To determine the language extension installed on your controller: * * - Compile and upload with LCD_LANGUAGE set to 'test' * - Click the controller to view the LCD menu * - The LCD will display Japanese, Western, or Cyrillic text * * See http://marlinfw.org/docs/development/lcd_language.html * * :['JAPANESE', 'WESTERN', 'CYRILLIC'] */ #define DISPLAY_CHARSET_HD44780 JAPANESE /** * Info Screen Style (0:Classic, 1:Prusa) * * :[0:'Classic', 1:'Prusa'] */ #define LCD_INFO_SCREEN_STYLE 0 /** * SD CARD * * SD Card support is disabled by default. If your controller has an SD slot, * you must uncomment the following option or it won't work. * */ #define SDSUPPORT /** * SD CARD: SPI SPEED * * Enable one of the following items for a slower SPI transfer speed. * This may be required to resolve "volume init" errors. */ //#define SPI_SPEED SPI_HALF_SPEED //#define SPI_SPEED SPI_QUARTER_SPEED //#define SPI_SPEED SPI_EIGHTH_SPEED /** * SD CARD: ENABLE CRC * * Use CRC checks and retries on the SD communication. */ #define SD_CHECK_AND_RETRY /** * LCD Menu Items * * Disable all menus and only display the Status Screen, or * just remove some extraneous menu items to recover space. */ //#define NO_LCD_MENUS //#define SLIM_LCD_MENUS // // ENCODER SETTINGS // // This option overrides the default number of encoder pulses needed to // produce one step. Should be increased for high-resolution encoders. // //#define ENCODER_PULSES_PER_STEP 4 // // Use this option to override the number of step signals required to // move between next/prev menu items. // //#define ENCODER_STEPS_PER_MENU_ITEM 1 /** * Encoder Direction Options * * Test your encoder's behavior first with both options disabled. * * Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION. * Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION. * Reversed Value Editing only? Enable BOTH options. */ // // This option reverses the encoder direction everywhere. // // Set this option if CLOCKWISE causes values to DECREASE // #define REVERSE_ENCODER_DIRECTION // // This option reverses the encoder direction for navigating LCD menus. // // If CLOCKWISE normally moves DOWN this makes it go UP. // If CLOCKWISE normally moves UP this makes it go DOWN. // #define REVERSE_MENU_DIRECTION // // This option reverses the encoder direction for Select Screen. // // If CLOCKWISE normally moves LEFT this makes it go RIGHT. // If CLOCKWISE normally moves RIGHT this makes it go LEFT. // //#define REVERSE_SELECT_DIRECTION // // Individual Axis Homing // // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // //#define INDIVIDUAL_AXIS_HOMING_MENU // // SPEAKER/BUZZER // // If you have a speaker that can produce tones, enable it here. // By default Marlin assumes you have a buzzer with a fixed frequency. // #define SPEAKER // // The duration and frequency for the UI feedback sound. // Set these to 0 to disable audio feedback in the LCD menus. // // Note: Test audio output with the G-Code: // M300 S P // //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 //#define LCD_FEEDBACK_FREQUENCY_HZ 5000 //============================================================================= //======================== LCD / Controller Selection ========================= //======================== (Character-based LCDs) ========================= //============================================================================= // // RepRapDiscount Smart Controller. // http://reprap.org/wiki/RepRapDiscount_Smart_Controller // // Note: Usually sold with a white PCB. // //#define REPRAP_DISCOUNT_SMART_CONTROLLER // // Original RADDS LCD Display+Encoder+SDCardReader // http://doku.radds.org/dokumentation/lcd-display/ // //#define RADDS_DISPLAY // // ULTIMAKER Controller. // //#define ULTIMAKERCONTROLLER // // ULTIPANEL as seen on Thingiverse. // //#define ULTIPANEL // // PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3) // http://reprap.org/wiki/PanelOne // //#define PANEL_ONE // // GADGETS3D G3D LCD/SD Controller // http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel // // Note: Usually sold with a blue PCB. // //#define G3D_PANEL // // RigidBot Panel V1.0 // http://www.inventapart.com/ // //#define RIGIDBOT_PANEL // // Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller // https://www.aliexpress.com/item/Micromake-Makeboard-3D-Printer-Parts-3D-Printer-Mini-Display-1602-Mini-Controller-Compatible-with-Ramps-1/32765887917.html // //#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602 // // ANET and Tronxy 20x4 Controller // //#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin. // This LCD is known to be susceptible to electrical interference // which scrambles the display. Pressing any button clears it up. // This is a LCD2004 display with 5 analog buttons. // // Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD. // //#define ULTRA_LCD //============================================================================= //======================== LCD / Controller Selection ========================= //===================== (I2C and Shift-Register LCDs) ===================== //============================================================================= // // CONTROLLER TYPE: I2C // // Note: These controllers require the installation of Arduino's LiquidCrystal_I2C // library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C // // // Elefu RA Board Control Panel // http://www.elefu.com/index.php?route=product/product&product_id=53 // //#define RA_CONTROL_PANEL // // Sainsmart (YwRobot) LCD Displays // // These require F.Malpartida's LiquidCrystal_I2C library // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home // //#define LCD_SAINSMART_I2C_1602 //#define LCD_SAINSMART_I2C_2004 // // Generic LCM1602 LCD adapter // //#define LCM1602 // // PANELOLU2 LCD with status LEDs, // separate encoder and click inputs. // // Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later. // For more info: https://github.com/lincomatic/LiquidTWI2 // // Note: The PANELOLU2 encoder click input can either be directly connected to // a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). // //#define LCD_I2C_PANELOLU2 // // Panucatt VIKI LCD with status LEDs, // integrated click & L/R/U/D buttons, separate encoder inputs. // //#define LCD_I2C_VIKI // // CONTROLLER TYPE: Shift register panels // // // 2-wire Non-latching LCD SR from https://goo.gl/aJJ4sH // LCD configuration: http://reprap.org/wiki/SAV_3D_LCD // //#define SAV_3DLCD // // 3-wire SR LCD with strobe using 74HC4094 // https://github.com/mikeshub/SailfishLCD // Uses the code directly from Sailfish // //#define FF_INTERFACEBOARD //============================================================================= //======================= LCD / Controller Selection ======================= //========================= (Graphical LCDs) ======================== //============================================================================= // // CONTROLLER TYPE: Graphical 128x64 (DOGM) // // IMPORTANT: The U8glib library is required for Graphical Display! // https://github.com/olikraus/U8glib_Arduino // // // RepRapDiscount FULL GRAPHIC Smart Controller // http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller // #define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // // ReprapWorld Graphical LCD // https://reprapworld.com/?products_details&products_id/1218 // //#define REPRAPWORLD_GRAPHICAL_LCD // // Activate one of these if you have a Panucatt Devices // Viki 2.0 or mini Viki with Graphic LCD // http://panucatt.com // //#define VIKI2 //#define miniVIKI // // MakerLab Mini Panel with graphic // controller and SD support - http://reprap.org/wiki/Mini_panel // //#define MINIPANEL // // MaKr3d Makr-Panel with graphic controller and SD support. // http://reprap.org/wiki/MaKr3d_MaKrPanel // //#define MAKRPANEL // // Adafruit ST7565 Full Graphic Controller. // https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/ // //#define ELB_FULL_GRAPHIC_CONTROLLER // // BQ LCD Smart Controller shipped by // default with the BQ Hephestos 2 and Witbox 2. // //#define BQ_LCD_SMART_CONTROLLER // // Cartesio UI // http://mauk.cc/webshop/cartesio-shop/electronics/user-interface // //#define CARTESIO_UI // // LCD for Melzi Card with Graphical LCD // //#define LCD_FOR_MELZI // // Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder // https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1) // //#define ULTI_CONTROLLER // // MKS MINI12864 with graphic controller and SD support // https://reprap.org/wiki/MKS_MINI_12864 // //#define MKS_MINI_12864 // // FYSETC variant of the MINI12864 graphic controller with SD support // https://wiki.fysetc.com/Mini12864_Panel/ // //#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default //#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on) //#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight //#define FYSETC_MINI_12864_2_1 // Type A/B. Neopixel RGB Backlight // // Factory display for Creality CR-10 // https://www.aliexpress.com/item/Universal-LCD-12864-3D-Printer-Display-Screen-With-Encoder-For-CR-10-CR-7-Model/32833148327.html // // This is RAMPS-compatible using a single 10-pin connector. // (For CR-10 owners who want to replace the Melzi Creality board but retain the display) // //#define CR10_STOCKDISPLAY // // ANET and Tronxy Graphical Controller // // Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6 // A clone of the RepRapDiscount full graphics display but with // different pins/wiring (see pins_ANET_10.h). // //#define ANET_FULL_GRAPHICS_LCD // // AZSMZ 12864 LCD with SD // https://www.aliexpress.com/store/product/3D-printer-smart-controller-SMART-RAMPS-OR-RAMPS-1-4-LCD-12864-LCD-control-panel-green/2179173_32213636460.html // //#define AZSMZ_12864 // // Silvergate GLCD controller // http://github.com/android444/Silvergate // //#define SILVER_GATE_GLCD_CONTROLLER //============================================================================= //============================== OLED Displays ============================== //============================================================================= // // SSD1306 OLED full graphics generic display // //#define U8GLIB_SSD1306 // // SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules // //#define SAV_3DGLCD #if ENABLED(SAV_3DGLCD) #define U8GLIB_SSD1306 //#define U8GLIB_SH1106 #endif // // TinyBoy2 128x64 OLED / Encoder Panel // //#define OLED_PANEL_TINYBOY2 // // MKS OLED 1.3" 128 × 64 FULL GRAPHICS CONTROLLER // http://reprap.org/wiki/MKS_12864OLED // // Tiny, but very sharp OLED display // //#define MKS_12864OLED // Uses the SH1106 controller (default) //#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller // // Einstart S OLED SSD1306 // //#define U8GLIB_SH1106_EINSTART // // Overlord OLED display/controller with i2c buzzer and LEDs // //#define OVERLORD_OLED //============================================================================= //========================== Extensible UI Displays =========================== //============================================================================= // // DGUS Touch Display with DWIN OS // //#define DGUS_LCD // // Touch-screen LCD for Malyan M200 printers // //#define MALYAN_LCD // // LulzBot Color Touch UI for FTDI EVE (FT800/FT810) displays // See Configuration_adv.h for all configuration options. // //#define LULZBOT_TOUCH_UI // // Third-party or vendor-customized controller interfaces. // Sources should be installed in 'src/lcd/extensible_ui'. // //#define EXTENSIBLE_UI //============================================================================= //=============================== Graphical TFTs ============================== //============================================================================= // // FSMC display (MKS Robin, Alfawise U20, JGAurora A5S, REXYZ A1, etc.) // //#define FSMC_GRAPHICAL_TFT //============================================================================= //============================ Other Controllers ============================ //============================================================================= // // ADS7843/XPT2046 ADC Touchscreen such as ILI9341 2.8 // //#define TOUCH_BUTTONS #if ENABLED(TOUCH_BUTTONS) #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define XPT2046_X_CALIBRATION 12316 #define XPT2046_Y_CALIBRATION -8981 #define XPT2046_X_OFFSET -43 #define XPT2046_Y_OFFSET 257 #endif // // RepRapWorld REPRAPWORLD_KEYPAD v1.1 // http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626 // //#define REPRAPWORLD_KEYPAD //#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press //============================================================================= //=============================== Extra Features ============================== //============================================================================= // @section extras // Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino //#define FAST_PWM_FAN // Use software PWM to drive the fan, as for the heaters. This uses a very low frequency // which is not as annoying as with the hardware PWM. On the other hand, if this frequency // is too low, you should also increment SOFT_PWM_SCALE. //#define FAN_SOFT_PWM // Incrementing this by 1 will double the software PWM frequency, // affecting heaters, and the fan if FAN_SOFT_PWM is enabled. // However, control resolution will be halved for each increment; // at zero value, there are 128 effective control positions. // :[0,1,2,3,4,5,6,7] #define SOFT_PWM_SCALE 0 // If SOFT_PWM_SCALE is set to a value higher than 0, dithering can // be used to mitigate the associated resolution loss. If enabled, // some of the PWM cycles are stretched so on average the desired // duty cycle is attained. //#define SOFT_PWM_DITHER // Temperature status LEDs that display the hotend and bed temperature. // If all hotends, bed temperature, and target temperature are under 54C // then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis) //#define TEMP_STAT_LEDS // SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure //#define SF_ARC_FIX // Support for the BariCUDA Paste Extruder //#define BARICUDA // Support for BlinkM/CyzRgb //#define BLINKM // Support for PCA9632 PWM LED driver //#define PCA9632 // Support for PCA9533 PWM LED driver // https://github.com/mikeshub/SailfishRGB_LED //#define PCA9533 /** * RGB LED / LED Strip Control * * Enable support for an RGB LED connected to 5V digital pins, or * an RGB Strip connected to MOSFETs controlled by digital pins. * * Adds the M150 command to set the LED (or LED strip) color. * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of * luminance values can be set from 0 to 255. * For Neopixel LED an overall brightness parameter is also available. * * *** CAUTION *** * LED Strips require a MOSFET Chip between PWM lines and LEDs, * as the Arduino cannot handle the current the LEDs will require. * Failure to follow this precaution can destroy your Arduino! * NOTE: A separate 5V power supply is required! The Neopixel LED needs * more current than the Arduino 5V linear regulator can produce. * *** CAUTION *** * * LED Type. Enable only one of the following two options. * */ //#define RGB_LED //#define RGBW_LED #if EITHER(RGB_LED, RGBW_LED) //#define RGB_LED_R_PIN 34 //#define RGB_LED_G_PIN 43 //#define RGB_LED_B_PIN 35 //#define RGB_LED_W_PIN -1 #endif // Support for Adafruit Neopixel LED driver //#define NEOPIXEL_LED #if ENABLED(NEOPIXEL_LED) #define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h) #define NEOPIXEL_PIN 4 // LED driving pin //#define NEOPIXEL2_TYPE NEOPIXEL_TYPE //#define NEOPIXEL2_PIN 5 #define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip, larger of 2 strips if 2 neopixel strips are used #define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once. #define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255) //#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup // Use a single Neopixel LED for static (background) lighting //#define NEOPIXEL_BKGD_LED_INDEX 0 // Index of the LED to use //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W #endif /** * Printer Event LEDs * * During printing, the LEDs will reflect the printer status: * * - Gradually change from blue to violet as the heated bed gets to target temp * - Gradually change from violet to red as the hotend gets to temperature * - Change to white to illuminate work surface * - Change to green once print has finished * - Turn off after the print has finished and the user has pushed a button */ #if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED) #define PRINTER_EVENT_LEDS #endif /** * R/C SERVO support * Sponsored by TrinityLabs, Reworked by codexmas */ /** * Number of servos * * For some servo-related options NUM_SERVOS will be set automatically. * Set this manually if there are extra servos needing manual control. * Leave undefined or set to 0 to entirely disable the servo subsystem. */ //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command // (ms) Delay before the next move will start, to give the servo time to reach its target angle. // 300ms is a good value but you can try less delay. // If the servo can't reach the requested position, increase it. #define SERVO_DELAY { 300 } // Only power servos during movement, otherwise leave off to prevent jitter //#define DEACTIVATE_SERVOS_AFTER_MOVE // Allow servo angle to be edited and saved to EEPROM //#define EDITABLE_SERVO_ANGLES ```
Configuration_adv.h ```c++ /** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * Configuration_adv.h * * Advanced settings. * Only change these if you know exactly what you're doing. * Some of these settings can damage your printer if improperly set! * * Basic settings can be found in Configuration.h * */ #define CONFIGURATION_ADV_H_VERSION 020000 // @section temperature //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== // // Custom Thermistor 1000 parameters // #if TEMP_SENSOR_0 == 1000 #define HOTEND0_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND0_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND0_BETA 3950 // Beta value #endif #if TEMP_SENSOR_1 == 1000 #define HOTEND1_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND1_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND1_BETA 3950 // Beta value #endif #if TEMP_SENSOR_2 == 1000 #define HOTEND2_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND2_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND2_BETA 3950 // Beta value #endif #if TEMP_SENSOR_3 == 1000 #define HOTEND3_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND3_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND3_BETA 3950 // Beta value #endif #if TEMP_SENSOR_4 == 1000 #define HOTEND4_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND4_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND4_BETA 3950 // Beta value #endif #if TEMP_SENSOR_5 == 1000 #define HOTEND5_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND5_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND5_BETA 3950 // Beta value #endif #if TEMP_SENSOR_BED == 1000 #define BED_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define BED_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define BED_BETA 3950 // Beta value #endif #if TEMP_SENSOR_CHAMBER == 1000 #define CHAMBER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define CHAMBER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define CHAMBER_BETA 3950 // Beta value #endif // // Hephestos 2 24V heated bed upgrade kit. // https://store.bq.com/en/heated-bed-kit-hephestos2 // //#define HEPHESTOS2_HEATED_BED_KIT #if ENABLED(HEPHESTOS2_HEATED_BED_KIT) #undef TEMP_SENSOR_BED #define TEMP_SENSOR_BED 70 #define HEATER_BED_INVERTING true #endif /** * Heated Chamber settings */ #if TEMP_SENSOR_CHAMBER #define CHAMBER_MINTEMP 5 #define CHAMBER_MAXTEMP 60 #define TEMP_CHAMBER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target //#define CHAMBER_LIMIT_SWITCHING //#define HEATER_CHAMBER_PIN 44 // Chamber heater on/off pin //#define HEATER_CHAMBER_INVERTING false #endif #if DISABLED(PIDTEMPBED) #define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control #if ENABLED(BED_LIMIT_SWITCHING) #define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #endif #endif /** * Thermal Protection provides additional protection to your printer from damage * and fire. Marlin always includes safe min and max temperature ranges which * protect against a broken or disconnected thermistor wire. * * The issue: If a thermistor falls out, it will report the much lower * temperature of the air in the room, and the the firmware will keep * the heater on. * * The solution: Once the temperature reaches the target, start observing. * If the temperature stays too far below the target (hysteresis) for too * long (period), the firmware will halt the machine as a safety precaution. * * If you get false positives for "Thermal Runaway", increase * THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD */ #if ENABLED(THERMAL_PROTECTION_HOTENDS) #define THERMAL_PROTECTION_PERIOD 120 // Seconds #define THERMAL_PROTECTION_HYSTERESIS 10 // Degrees Celsius //#define ADAPTIVE_FAN_SLOWING // Slow part cooling fan if temperature drops #if BOTH(ADAPTIVE_FAN_SLOWING, PIDTEMP) //#define NO_FAN_SLOWING_IN_PID_TUNING // Don't slow fan speed during M303 #endif /** * Whenever an M104, M109, or M303 increases the target temperature, the * firmware will wait for the WATCH_TEMP_PERIOD to expire. If the temperature * hasn't increased by WATCH_TEMP_INCREASE degrees, the machine is halted and * requires a hard reset. This test restarts with any M104/M109/M303, but only * if the current temperature is far enough below the target for a reliable * test. * * If you get false positives for "Heating failed", increase WATCH_TEMP_PERIOD * and/or decrease WATCH_TEMP_INCREASE. WATCH_TEMP_INCREASE should not be set * below 2. */ #define WATCH_TEMP_PERIOD 120 // Seconds #define WATCH_TEMP_INCREASE 2 // Degrees Celsius #endif /** * Thermal Protection parameters for the bed are just as above for hotends. */ #if ENABLED(THERMAL_PROTECTION_BED) #define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds #define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius /** * As described above, except for the bed (M140/M190/M303). */ #define WATCH_BED_TEMP_PERIOD 60 // Seconds #define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius #endif /** * Thermal Protection parameters for the heated chamber. */ #if ENABLED(THERMAL_PROTECTION_CHAMBER) #define THERMAL_PROTECTION_CHAMBER_PERIOD 20 // Seconds #define THERMAL_PROTECTION_CHAMBER_HYSTERESIS 2 // Degrees Celsius /** * Heated chamber watch settings (M141/M191). */ #define WATCH_CHAMBER_TEMP_PERIOD 60 // Seconds #define WATCH_CHAMBER_TEMP_INCREASE 2 // Degrees Celsius #endif #if ENABLED(PIDTEMP) // Add an experimental additional term to the heater power, proportional to the extrusion speed. // A well-chosen Kc value should add just enough power to melt the increased material volume. //#define PID_EXTRUSION_SCALING #if ENABLED(PID_EXTRUSION_SCALING) #define DEFAULT_Kc (100) //heating power=Kc*(e_speed) #define LPQ_MAX_LEN 50 #endif #endif /** * Automatic Temperature: * The hotend target temperature is calculated by all the buffered lines of gcode. * The maximum buffered steps/sec of the extruder motor is called "se". * Start autotemp mode with M109 S B F * The target temperature is set to mintemp+factor*se[steps/sec] and is limited by * mintemp and maxtemp. Turn this off by executing M109 without F* * Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp. * On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode */ #define AUTOTEMP #if ENABLED(AUTOTEMP) #define AUTOTEMP_OLDWEIGHT 0.98 #endif // Show extra position information with 'M114 D' //#define M114_DETAIL // Show Temperature ADC value // Enable for M105 to include ADC values read from temperature sensors. //#define SHOW_TEMP_ADC_VALUES /** * High Temperature Thermistor Support * * Thermistors able to support high temperature tend to have a hard time getting * good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP * will probably be caught when the heating element first turns on during the * preheating process, which will trigger a min_temp_error as a safety measure * and force stop everything. * To circumvent this limitation, we allow for a preheat time (during which, * min_temp_error won't be triggered) and add a min_temp buffer to handle * aberrant readings. * * If you want to enable this feature for your hotend thermistor(s) * uncomment and set values > 0 in the constants below */ // The number of consecutive low temperature errors that can occur // before a min_temp_error is triggered. (Shouldn't be more than 10.) //#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0 // The number of milliseconds a hotend will preheat before starting to check // the temperature. This value should NOT be set to the time it takes the // hot end to reach the target temperature, but the time it takes to reach // the minimum temperature your thermistor can read. The lower the better/safer. // This shouldn't need to be more than 30 seconds (30000) //#define MILLISECONDS_PREHEAT_TIME 0 // @section extruder // Extruder runout prevention. // If the machine is idle and the temperature over MINTEMP // then extrude some filament every couple of SECONDS. //#define EXTRUDER_RUNOUT_PREVENT #if ENABLED(EXTRUDER_RUNOUT_PREVENT) #define EXTRUDER_RUNOUT_MINTEMP 190 #define EXTRUDER_RUNOUT_SECONDS 30 #define EXTRUDER_RUNOUT_SPEED 1500 // (mm/m) #define EXTRUDER_RUNOUT_EXTRUDE 5 // (mm) #endif // @section temperature // Calibration for AD595 / AD8495 sensor to adjust temperature measurements. // The final temperature is calculated as (measuredTemp * GAIN) + OFFSET. #define TEMP_SENSOR_AD595_OFFSET 0.0 #define TEMP_SENSOR_AD595_GAIN 1.0 #define TEMP_SENSOR_AD8495_OFFSET 0.0 #define TEMP_SENSOR_AD8495_GAIN 1.0 /** * Controller Fan * To cool down the stepper drivers and MOSFETs. * * The fan will turn on automatically whenever any stepper is enabled * and turn off after a set period after all steppers are turned off. */ //#define USE_CONTROLLER_FAN #if ENABLED(USE_CONTROLLER_FAN) //#define CONTROLLER_FAN_PIN -1 // Set a custom pin for the controller fan #define CONTROLLERFAN_SECS 60 // Duration in seconds for the fan to run after all motors are disabled #define CONTROLLERFAN_SPEED 255 // 255 == full speed //#define CONTROLLERFAN_SPEED_Z_ONLY 127 // Reduce noise on machines that keep Z enabled #endif // When first starting the main fan, run it at full speed for the // given number of milliseconds. This gets the fan spinning reliably // before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu) #define FAN_KICKSTART_TIME 200 /** * PWM Fan Scaling * * Define the min/max speeds for PWM fans (as set with M106). * * With these options the M106 0-255 value range is scaled to a subset * to ensure that the fan has enough power to spin, or to run lower * current fans with higher current. (e.g., 5V/12V fans with 12V/24V) * Value 0 always turns off the fan. * * Define one or both of these to override the default 0-255 range. */ #define FAN_MIN_PWM 1 //#define FAN_MAX_PWM 128 /** * FAST PWM FAN Settings * * Use to change the FAST FAN PWM frequency (if enabled in Configuration.h) * Combinations of PWM Modes, prescale values and TOP resolutions are used internally to produce a * frequency as close as possible to the desired frequency. * * FAST_PWM_FAN_FREQUENCY [undefined by default] * Set this to your desired frequency. * If left undefined this defaults to F = F_CPU/(2*255*1) * ie F = 31.4 Khz on 16 MHz microcontrollers or F = 39.2 KHz on 20 MHz microcontrollers * These defaults are the same as with the old FAST_PWM_FAN implementation - no migration is required * NOTE: Setting very low frequencies (< 10 Hz) may result in unexpected timer behavior. * * USE_OCR2A_AS_TOP [undefined by default] * Boards that use TIMER2 for PWM have limitations resulting in only a few possible frequencies on TIMER2: * 16MHz MCUs: [62.5KHz, 31.4KHz (default), 7.8KHz, 3.92KHz, 1.95KHz, 977Hz, 488Hz, 244Hz, 60Hz, 122Hz, 30Hz] * 20MHz MCUs: [78.1KHz, 39.2KHz (default), 9.77KHz, 4.9KHz, 2.44KHz, 1.22KHz, 610Hz, 305Hz, 153Hz, 76Hz, 38Hz] * A greater range can be achieved by enabling USE_OCR2A_AS_TOP. But note that this option blocks the use of * PWM on pin OC2A. Only use this option if you don't need PWM on 0C2A. (Check your schematic.) * USE_OCR2A_AS_TOP sacrifices duty cycle control resolution to achieve this broader range of frequencies. */ #if ENABLED(FAST_PWM_FAN) //#define FAST_PWM_FAN_FREQUENCY 31400 //#define USE_OCR2A_AS_TOP #endif // @section extruder /** * Extruder cooling fans * * Extruder auto fans automatically turn on when their extruders' * temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE. * * Your board's pins file specifies the recommended pins. Override those here * or set to -1 to disable completely. * * Multiple extruders can be assigned to the same pin in which case * the fan will turn on when any selected extruder is above the threshold. */ #define E0_AUTO_FAN_PIN -1 #define E1_AUTO_FAN_PIN -1 #define E2_AUTO_FAN_PIN -1 #define E3_AUTO_FAN_PIN -1 #define E4_AUTO_FAN_PIN -1 #define E5_AUTO_FAN_PIN -1 #define CHAMBER_AUTO_FAN_PIN -1 #define EXTRUDER_AUTO_FAN_TEMPERATURE 50 #define EXTRUDER_AUTO_FAN_SPEED 255 // 255 == full speed #define CHAMBER_AUTO_FAN_TEMPERATURE 30 #define CHAMBER_AUTO_FAN_SPEED 255 /** * Part-Cooling Fan Multiplexer * * This feature allows you to digitally multiplex the fan output. * The multiplexer is automatically switched at tool-change. * Set FANMUX[012]_PINs below for up to 2, 4, or 8 multiplexed fans. */ #define FANMUX0_PIN -1 #define FANMUX1_PIN -1 #define FANMUX2_PIN -1 /** * M355 Case Light on-off / brightness */ //#define CASE_LIGHT_ENABLE #if ENABLED(CASE_LIGHT_ENABLE) //#define CASE_LIGHT_PIN 4 // Override the default pin if needed #define INVERT_CASE_LIGHT false // Set true if Case Light is ON when pin is LOW #define CASE_LIGHT_DEFAULT_ON true // Set default power-up state on #define CASE_LIGHT_DEFAULT_BRIGHTNESS 105 // Set default power-up brightness (0-255, requires PWM pin) //#define CASE_LIGHT_MAX_PWM 128 // Limit pwm //#define CASE_LIGHT_MENU // Add Case Light options to the LCD menu //#define CASE_LIGHT_NO_BRIGHTNESS // Disable brightness control. Enable for non-PWM lighting. //#define CASE_LIGHT_USE_NEOPIXEL // Use Neopixel LED as case light, requires NEOPIXEL_LED. #if ENABLED(CASE_LIGHT_USE_NEOPIXEL) #define CASE_LIGHT_NEOPIXEL_COLOR { 255, 255, 255, 255 } // { Red, Green, Blue, White } #endif #endif // @section homing // If you want endstops to stay on (by default) even when not homing // enable this option. Override at any time with M120, M121. //#define ENDSTOPS_ALWAYS_ON_DEFAULT // @section extras //#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats. // Employ an external closed loop controller. Override pins here if needed. //#define EXTERNAL_CLOSED_LOOP_CONTROLLER #if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER) //#define CLOSED_LOOP_ENABLE_PIN -1 //#define CLOSED_LOOP_MOVE_COMPLETE_PIN -1 #endif /** * Dual Steppers / Dual Endstops * * This section will allow you to use extra E drivers to drive a second motor for X, Y, or Z axes. * * For example, set X_DUAL_STEPPER_DRIVERS setting to use a second motor. If the motors need to * spin in opposite directions set INVERT_X2_VS_X_DIR. If the second motor needs its own endstop * set X_DUAL_ENDSTOPS. This can adjust for "racking." Use X2_USE_ENDSTOP to set the endstop plug * that should be used for the second endstop. Extra endstops will appear in the output of 'M119'. * * Use X_DUAL_ENDSTOP_ADJUSTMENT to adjust for mechanical imperfection. After homing both motors * this offset is applied to the X2 motor. To find the offset home the X axis, and measure the error * in X2. Dual endstop offsets can be set at runtime with 'M666 X Y Z'. */ //#define X_DUAL_STEPPER_DRIVERS #if ENABLED(X_DUAL_STEPPER_DRIVERS) #define INVERT_X2_VS_X_DIR true // Set 'true' if X motors should rotate in opposite directions //#define X_DUAL_ENDSTOPS #if ENABLED(X_DUAL_ENDSTOPS) #define X2_USE_ENDSTOP _XMAX_ #define X_DUAL_ENDSTOPS_ADJUSTMENT 0 #endif #endif //#define Y_DUAL_STEPPER_DRIVERS #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define INVERT_Y2_VS_Y_DIR true // Set 'true' if Y motors should rotate in opposite directions //#define Y_DUAL_ENDSTOPS #if ENABLED(Y_DUAL_ENDSTOPS) #define Y2_USE_ENDSTOP _YMAX_ #define Y_DUAL_ENDSTOPS_ADJUSTMENT 0 #endif #endif //#define Z_DUAL_STEPPER_DRIVERS #if ENABLED(Z_DUAL_STEPPER_DRIVERS) //#define Z_DUAL_ENDSTOPS #if ENABLED(Z_DUAL_ENDSTOPS) #define Z2_USE_ENDSTOP _XMAX_ #define Z_DUAL_ENDSTOPS_ADJUSTMENT 0 #endif #endif //#define Z_TRIPLE_STEPPER_DRIVERS #if ENABLED(Z_TRIPLE_STEPPER_DRIVERS) //#define Z_TRIPLE_ENDSTOPS #if ENABLED(Z_TRIPLE_ENDSTOPS) #define Z2_USE_ENDSTOP _XMAX_ #define Z3_USE_ENDSTOP _YMAX_ #define Z_TRIPLE_ENDSTOPS_ADJUSTMENT2 0 #define Z_TRIPLE_ENDSTOPS_ADJUSTMENT3 0 #endif #endif /** * Dual X Carriage * * This setup has two X carriages that can move independently, each with its own hotend. * The carriages can be used to print an object with two colors or materials, or in * "duplication mode" it can print two identical or X-mirrored objects simultaneously. * The inactive carriage is parked automatically to prevent oozing. * X1 is the left carriage, X2 the right. They park and home at opposite ends of the X axis. * By default the X2 stepper is assigned to the first unused E plug on the board. * * The following Dual X Carriage modes can be selected with M605 S: * * 0 : (FULL_CONTROL) The slicer has full control over both X-carriages and can achieve optimal travel * results as long as it supports dual X-carriages. (M605 S0) * * 1 : (AUTO_PARK) The firmware automatically parks and unparks the X-carriages on tool-change so * that additional slicer support is not required. (M605 S1) * * 2 : (DUPLICATION) The firmware moves the second X-carriage and extruder in synchronization with * the first X-carriage and extruder, to print 2 copies of the same object at the same time. * Set the constant X-offset and temperature differential with M605 S2 X[offs] R[deg] and * follow with M605 S2 to initiate duplicated movement. * * 3 : (MIRRORED) Formbot/Vivedino-inspired mirrored mode in which the second extruder duplicates * the movement of the first except the second extruder is reversed in the X axis. * Set the initial X offset and temperature differential with M605 S2 X[offs] R[deg] and * follow with M605 S3 to initiate mirrored movement. */ //#define DUAL_X_CARRIAGE #if ENABLED(DUAL_X_CARRIAGE) #define X1_MIN_POS X_MIN_POS // Set to X_MIN_POS #define X1_MAX_POS X_BED_SIZE // Set a maximum so the first X-carriage can't hit the parked second X-carriage #define X2_MIN_POS 80 // Set a minimum to ensure the second X-carriage can't hit the parked first X-carriage #define X2_MAX_POS 353 // Set this to the distance between toolheads when both heads are homed #define X2_HOME_DIR 1 // Set to 1. The second X-carriage always homes to the maximum endstop position #define X2_HOME_POS X2_MAX_POS // Default X2 home position. Set to X2_MAX_POS. // However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops // without modifying the firmware (through the "M218 T1 X???" command). // Remember: you should set the second extruder x-offset to 0 in your slicer. // This is the default power-up mode which can be later using M605. #define DEFAULT_DUAL_X_CARRIAGE_MODE DXC_AUTO_PARK_MODE // Default x offset in duplication mode (typically set to half print bed width) #define DEFAULT_DUPLICATION_X_OFFSET 100 #endif // DUAL_X_CARRIAGE // Activate a solenoid on the active extruder with M380. Disable all with M381. // Define SOL0_PIN, SOL1_PIN, etc., for each extruder that has a solenoid. //#define EXT_SOLENOID // @section homing // Homing hits each endstop, retracts by these distances, then does a slower bump. #define X_HOME_BUMP_MM 5 #define Y_HOME_BUMP_MM 5 #define Z_HOME_BUMP_MM 2 #define HOMING_BUMP_DIVISOR { 2, 2, 8 } // Re-Bump Speed Divisor (Divides the Homing Feedrate) #define QUICK_HOME // If homing includes X and Y, do a diagonal move initially //#define HOMING_BACKOFF_MM { 2, 2, 2 } // (mm) Move away from the endstops after homing // When G28 is called, this option will make Y home before X //#define HOME_Y_BEFORE_X // Enable this if X or Y can't home without homing the other axis first. //#define CODEPENDENT_XY_HOMING #if ENABLED(BLTOUCH) /** * Either: Use the defaults (recommended) or: For special purposes, use the following DEFINES * Do not activate settings that the probe might not understand. Clones might misunderstand * advanced commands. * * Note: If the probe is not deploying, check a "Cmd: Reset" and "Cmd: Self-Test" and then * check the wiring of the BROWN, RED and ORANGE wires. * * Note: If the trigger signal of your probe is not being recognized, it has been very often * because the BLACK and WHITE wires needed to be swapped. They are not "interchangeable" * like they would be with a real switch. So please check the wiring first. * * Settings for all BLTouch and clone probes: */ // Safety: The probe needs time to recognize the command. // Minimum command delay (ms). Enable and increase if needed. //#define BLTOUCH_DELAY 500 /** * Settings for BLTOUCH Classic 1.2, 1.3 or BLTouch Smart 1.0, 2.0, 2.2, 3.0, 3.1, and most clones: */ // Feature: Switch into SW mode after a deploy. It makes the output pulse longer. Can be useful // in special cases, like noisy or filtered input configurations. //#define BLTOUCH_FORCE_SW_MODE /** * Settings for BLTouch Smart 3.0 and 3.1 * Summary: * - Voltage modes: 5V and OD (open drain - "logic voltage free") output modes * - High-Speed mode * - Disable LCD voltage options */ /** * Danger: Don't activate 5V mode unless attached to a 5V-tolerant controller! * V3.0 or 3.1: Set default mode to 5V mode at Marlin startup. * If disabled, OD mode is the hard-coded default on 3.0 * On startup, Marlin will compare its eeprom to this vale. If the selected mode * differs, a mode set eeprom write will be completed at initialization. * Use the option below to force an eeprom write to a V3.1 probe regardless. */ //#define BLTOUCH_SET_5V_MODE /** * Safety: Activate if connecting a probe with an unknown voltage mode. * V3.0: Set a probe into mode selected above at Marlin startup. Required for 5V mode on 3.0 * V3.1: Force a probe with unknown mode into selected mode at Marlin startup ( = Probe EEPROM write ) * To preserve the life of the probe, use this once then turn it off and re-flash. */ //#define BLTOUCH_FORCE_MODE_SET /** * Use "HIGH SPEED" mode for probing. * Danger: Disable if your probe sometimes fails. Only suitable for stable well-adjusted systems. * This feature was designed for Delta's with very fast Z moves however higher speed cartesians may function * If the machine cannot raise the probe fast enough after a trigger, it may enter a fault state. */ //#define BLTOUCH_HS_MODE // Safety: Enable voltage mode settings in the LCD menu. //#define BLTOUCH_LCD_VOLTAGE_MENU #endif // BLTOUCH /** * Z Steppers Auto-Alignment * Add the G34 command to align multiple Z steppers using a bed probe. */ //#define Z_STEPPER_AUTO_ALIGN #if ENABLED(Z_STEPPER_AUTO_ALIGN) // Define probe X and Y positions for Z1, Z2 [, Z3] #define Z_STEPPER_ALIGN_XY { { 10, 290 }, { 150, 10 }, { 290, 290 } } // Provide Z stepper positions for more rapid convergence in bed alignment. // Currently requires triple stepper drivers. //#define Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS) // Define Stepper XY positions for Z1, Z2, Z3 corresponding to // the Z screw positions in the bed carriage. // Define one position per Z stepper in stepper driver order. #define Z_STEPPER_ALIGN_STEPPER_XY { { 210.7, 102.5 }, { 152.6, 220.0 }, { 94.5, 102.5 } } #else // Amplification factor. Used to scale the correction step up or down. // In case the stepper (spindle) position is further out than the test point. // Use a value > 1. NOTE: This may cause instability #define Z_STEPPER_ALIGN_AMP 1.0 #endif // Set number of iterations to align #define Z_STEPPER_ALIGN_ITERATIONS 3 // Enable to restore leveling setup after operation #define RESTORE_LEVELING_AFTER_G34 // On a 300mm bed a 5% grade would give a misalignment of ~1.5cm #define G34_MAX_GRADE 5 // (%) Maximum incline G34 will handle // Stop criterion. If the accuracy is better than this stop iterating early #define Z_STEPPER_ALIGN_ACC 0.02 #endif // @section motion #define AXIS_RELATIVE_MODES { false, false, false, false } // Add a Duplicate option for well-separated conjoined nozzles //#define MULTI_NOZZLE_DUPLICATION // By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step. #define INVERT_X_STEP_PIN false #define INVERT_Y_STEP_PIN false #define INVERT_Z_STEP_PIN false #define INVERT_E_STEP_PIN false // Default stepper release if idle. Set to 0 to deactivate. // Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true. // Time can be set by M18 and M84. #define DEFAULT_STEPPER_DEACTIVE_TIME 120 #define DISABLE_INACTIVE_X true #define DISABLE_INACTIVE_Y true #define DISABLE_INACTIVE_Z false // Set to false if the nozzle will fall down on your printed part when print has finished. #define DISABLE_INACTIVE_E true #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 //#define HOME_AFTER_DEACTIVATE // Require rehoming after steppers are deactivated // Minimum time that a segment needs to take if the buffer is emptied #define DEFAULT_MINSEGMENTTIME 20000 // (ms) // If defined the movements slow down when the look ahead buffer is only half full #define SLOWDOWN // Frequency limit // See nophead's blog for more info // Not working O //#define XY_FREQUENCY_LIMIT 15 // Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end // of the buffer and all stops. This should not be much greater than zero and should only be changed // if unwanted behavior is observed on a user's machine when running at very slow speeds. #define MINIMUM_PLANNER_SPEED 0.05 // (mm/s) // // Backlash Compensation // Adds extra movement to axes on direction-changes to account for backlash. // #define BACKLASH_COMPENSATION #if ENABLED(BACKLASH_COMPENSATION) // Define values for backlash distance and correction. // If BACKLASH_GCODE is enabled these values are the defaults. #define BACKLASH_DISTANCE_MM { 0.14, 0, 0 } // (mm) #define BACKLASH_CORRECTION 1.0 // 0.0 = no correction; 1.0 = full correction // Set BACKLASH_SMOOTHING_MM to spread backlash correction over multiple segments // to reduce print artifacts. (Enabling this is costly in memory and computation!) //#define BACKLASH_SMOOTHING_MM 3 // (mm) // Add runtime configuration and tuning of backlash values (M425) #define BACKLASH_GCODE #if ENABLED(BACKLASH_GCODE) // Measure the Z backlash when probing (G29) and set with "M425 Z" //#define MEASURE_BACKLASH_WHEN_PROBING #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) // When measuring, the probe will move up to BACKLASH_MEASUREMENT_LIMIT // mm away from point of contact in BACKLASH_MEASUREMENT_RESOLUTION // increments while checking for the contact to be broken. #define BACKLASH_MEASUREMENT_LIMIT 0.5 // (mm) #define BACKLASH_MEASUREMENT_RESOLUTION 0.005 // (mm) #define BACKLASH_MEASUREMENT_FEEDRATE Z_PROBE_SPEED_SLOW // (mm/m) #endif #endif #endif /** * Automatic backlash, position and hotend offset calibration * * Enable G425 to run automatic calibration using an electrically- * conductive cube, bolt, or washer mounted on the bed. * * G425 uses the probe to touch the top and sides of the calibration object * on the bed and measures and/or correct positional offsets, axis backlash * and hotend offsets. * * Note: HOTEND_OFFSET and CALIBRATION_OBJECT_CENTER must be set to within * ±5mm of true values for G425 to succeed. */ //#define CALIBRATION_GCODE #if ENABLED(CALIBRATION_GCODE) #define CALIBRATION_MEASUREMENT_RESOLUTION 0.01 // mm #define CALIBRATION_FEEDRATE_SLOW 60 // mm/m #define CALIBRATION_FEEDRATE_FAST 1200 // mm/m #define CALIBRATION_FEEDRATE_TRAVEL 3000 // mm/m // The following parameters refer to the conical section of the nozzle tip. #define CALIBRATION_NOZZLE_TIP_HEIGHT 1.0 // mm #define CALIBRATION_NOZZLE_OUTER_DIAMETER 2.0 // mm // Uncomment to enable reporting (required for "G425 V", but consumes PROGMEM). //#define CALIBRATION_REPORTING // The true location and dimension the cube/bolt/washer on the bed. #define CALIBRATION_OBJECT_CENTER { 264.0, -22.0, -2.0 } // mm #define CALIBRATION_OBJECT_DIMENSIONS { 10.0, 10.0, 10.0 } // mm // Comment out any sides which are unreachable by the probe. For best // auto-calibration results, all sides must be reachable. #define CALIBRATION_MEASURE_RIGHT #define CALIBRATION_MEASURE_FRONT #define CALIBRATION_MEASURE_LEFT #define CALIBRATION_MEASURE_BACK // Probing at the exact top center only works if the center is flat. If // probing on a screwhead or hollow washer, probe near the edges. //#define CALIBRATION_MEASURE_AT_TOP_EDGES // Define pin which is read during calibration #ifndef CALIBRATION_PIN #define CALIBRATION_PIN -1 // Override in pins.h or set to -1 to use your Z endstop #define CALIBRATION_PIN_INVERTING false // Set to true to invert the pin //#define CALIBRATION_PIN_PULLDOWN #define CALIBRATION_PIN_PULLUP #endif #endif /** * Adaptive Step Smoothing increases the resolution of multi-axis moves, particularly at step frequencies * below 1kHz (for AVR) or 10kHz (for ARM), where aliasing between axes in multi-axis moves causes audible * vibration and surface artifacts. The algorithm adapts to provide the best possible step smoothing at the * lowest stepping frequencies. */ #define ADAPTIVE_STEP_SMOOTHING /** * Custom Microstepping * Override as-needed for your setup. Up to 3 MS pins are supported. */ //#define MICROSTEP1 LOW,LOW,LOW //#define MICROSTEP2 HIGH,LOW,LOW //#define MICROSTEP4 LOW,HIGH,LOW //#define MICROSTEP8 HIGH,HIGH,LOW //#define MICROSTEP16 LOW,LOW,HIGH //#define MICROSTEP32 HIGH,LOW,HIGH // Microstep setting (Only functional when stepper driver microstep pins are connected to MCU. #define MICROSTEP_MODES { 16, 16, 16, 16, 16, 16 } // [1,2,4,8,16] /** * @section stepper motor current * * Some boards have a means of setting the stepper motor current via firmware. * * The power on motor currents are set by: * PWM_MOTOR_CURRENT - used by MINIRAMBO & ULTIMAIN_2 * known compatible chips: A4982 * DIGIPOT_MOTOR_CURRENT - used by BQ_ZUM_MEGA_3D, RAMBO & SCOOVO_X9H * known compatible chips: AD5206 * DAC_MOTOR_CURRENT_DEFAULT - used by PRINTRBOARD_REVF & RIGIDBOARD_V2 * known compatible chips: MCP4728 * DIGIPOT_I2C_MOTOR_CURRENTS - used by 5DPRINT, AZTEEG_X3_PRO, AZTEEG_X5_MINI_WIFI, MIGHTYBOARD_REVE * known compatible chips: MCP4451, MCP4018 * * Motor currents can also be set by M907 - M910 and by the LCD. * M907 - applies to all. * M908 - BQ_ZUM_MEGA_3D, RAMBO, PRINTRBOARD_REVF, RIGIDBOARD_V2 & SCOOVO_X9H * M909, M910 & LCD - only PRINTRBOARD_REVF & RIGIDBOARD_V2 */ //#define PWM_MOTOR_CURRENT { 1300, 1300, 1250 } // Values in milliamps //#define DIGIPOT_MOTOR_CURRENT { 135,135,135,135,135 } // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) //#define DAC_MOTOR_CURRENT_DEFAULT { 70, 80, 90, 80 } // Default drive percent - X, Y, Z, E axis // Use an I2C based DIGIPOT (e.g., Azteeg X3 Pro) //#define DIGIPOT_I2C #if ENABLED(DIGIPOT_I2C) && !defined(DIGIPOT_I2C_ADDRESS_A) /** * Common slave addresses: * * A (A shifted) B (B shifted) IC * Smoothie 0x2C (0x58) 0x2D (0x5A) MCP4451 * AZTEEG_X3_PRO 0x2C (0x58) 0x2E (0x5C) MCP4451 * AZTEEG_X5_MINI 0x2C (0x58) 0x2E (0x5C) MCP4451 * AZTEEG_X5_MINI_WIFI 0x58 0x5C MCP4451 * MIGHTYBOARD_REVE 0x2F (0x5E) MCP4018 */ #define DIGIPOT_I2C_ADDRESS_A 0x2C // unshifted slave address for first DIGIPOT #define DIGIPOT_I2C_ADDRESS_B 0x2D // unshifted slave address for second DIGIPOT #endif //#define DIGIPOT_MCP4018 // Requires library from https://github.com/stawel/SlowSoftI2CMaster #define DIGIPOT_I2C_NUM_CHANNELS 8 // 5DPRINT: 4 AZTEEG_X3_PRO: 8 MKS SBASE: 5 // Actual motor currents in Amps. The number of entries must match DIGIPOT_I2C_NUM_CHANNELS. // These correspond to the physical drivers, so be mindful if the order is changed. #define DIGIPOT_I2C_MOTOR_CURRENTS { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 } // AZTEEG_X3_PRO //=========================================================================== //=============================Additional Features=========================== //=========================================================================== // @section lcd #if EITHER(ULTIPANEL, EXTENSIBLE_UI) #define MANUAL_FEEDRATE { 50*60, 50*60, 4*60, 60 } // Feedrates for manual moves along X, Y, Z, E from panel #define SHORT_MANUAL_Z_MOVE 0.025 // (mm) Smallest manual Z move (< 0.1mm) #if ENABLED(ULTIPANEL) #define MANUAL_E_MOVES_RELATIVE // Display extruder move distance rather than "position" #define ULTIPANEL_FEEDMULTIPLY // Encoder sets the feedrate multiplier on the Status Screen #endif #endif // Change values more rapidly when the encoder is rotated faster #define ENCODER_RATE_MULTIPLIER #if ENABLED(ENCODER_RATE_MULTIPLIER) #define ENCODER_10X_STEPS_PER_SEC 30 // (steps/s) Encoder rate for 10x speed #define ENCODER_100X_STEPS_PER_SEC 80 // (steps/s) Encoder rate for 100x speed #endif // Play a beep when the feedrate is changed from the Status Screen //#define BEEP_ON_FEEDRATE_CHANGE #if ENABLED(BEEP_ON_FEEDRATE_CHANGE) #define FEEDRATE_CHANGE_BEEP_DURATION 10 #define FEEDRATE_CHANGE_BEEP_FREQUENCY 440 #endif #if HAS_LCD_MENU // Include a page of printer information in the LCD Main Menu #define LCD_INFO_MENU #if ENABLED(LCD_INFO_MENU) //#define LCD_PRINTER_INFO_IS_BOOTSCREEN // Show bootscreen(s) instead of Printer Info pages #endif // BACK menu items keep the highlight at the top #define TURBO_BACK_MENU_ITEM /** * LED Control Menu * Add LED Control to the LCD menu */ //#define LED_CONTROL_MENU #if ENABLED(LED_CONTROL_MENU) #define LED_COLOR_PRESETS // Enable the Preset Color menu option #if ENABLED(LED_COLOR_PRESETS) #define LED_USER_PRESET_RED 255 // User defined RED value #define LED_USER_PRESET_GREEN 128 // User defined GREEN value #define LED_USER_PRESET_BLUE 0 // User defined BLUE value #define LED_USER_PRESET_WHITE 255 // User defined WHITE value #define LED_USER_PRESET_BRIGHTNESS 255 // User defined intensity //#define LED_USER_PRESET_STARTUP // Have the printer display the user preset color on startup #endif #endif #endif // HAS_LCD_MENU // Scroll a longer status message into view //#define STATUS_MESSAGE_SCROLLING // On the Info Screen, display XY with one decimal place when possible //#define LCD_DECIMAL_SMALL_XY // The timeout (in ms) to return to the status screen from sub-menus //#define LCD_TIMEOUT_TO_STATUS 15000 // Add an 'M73' G-code to set the current percentage //#define LCD_SET_PROGRESS_MANUALLY // Show the E position (filament used) during printing //#define LCD_SHOW_E_TOTAL #if HAS_GRAPHICAL_LCD && HAS_PRINT_PROGRESS //#define PRINT_PROGRESS_SHOW_DECIMALS // Show progress with decimal digits #define SHOW_REMAINING_TIME // Display estimated time to completion //#define ROTATE_PROGRESS_DISPLAY // Display (P)rogress, (E)lapsed, and (R)emaining time #endif #if HAS_CHARACTER_LCD && HAS_PRINT_PROGRESS //#define LCD_PROGRESS_BAR // Show a progress bar on HD44780 LCDs for SD printing #if ENABLED(LCD_PROGRESS_BAR) #define PROGRESS_BAR_BAR_TIME 2000 // (ms) Amount of time to show the bar #define PROGRESS_BAR_MSG_TIME 3000 // (ms) Amount of time to show the status message #define PROGRESS_MSG_EXPIRE 0 // (ms) Amount of time to retain the status message (0=forever) //#define PROGRESS_MSG_ONCE // Show the message for MSG_TIME then clear it //#define LCD_PROGRESS_BAR_TEST // Add a menu item to test the progress bar #endif #endif #if ENABLED(SDSUPPORT) // Some RAMPS and other boards don't detect when an SD card is inserted. You can work // around this by connecting a push button or single throw switch to the pin defined // as SD_DETECT_PIN in your board's pins definitions. // This setting should be disabled unless you are using a push button, pulling the pin to ground. // Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER). #define SD_DETECT_INVERTED #define SD_FINISHED_STEPPERRELEASE true // Disable steppers when SD Print is finished #define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // You might want to keep the Z enabled so your bed stays in place. // Reverse SD sort to show "more recent" files first, according to the card's FAT. // Since the FAT gets out of order with usage, SDCARD_SORT_ALPHA is recommended. //#define SDCARD_RATHERRECENTFIRST #define SD_MENU_CONFIRM_START // Confirm the selected SD file before printing //#define MENU_ADDAUTOSTART // Add a menu option to run auto#.g files // G-code to run on Stop Print (e.g., "G28XY" or "G27") #define EVENT_GCODE_SD_STOP "G28 XY\nG1 Y200 F18000\nM84 X Y E" /** * Continue after Power-Loss (Creality3D) * * Store the current state to the SD Card at the start of each layer * during SD printing. If the recovery file is found at boot time, present * an option on the LCD screen to continue the print from the last-known * point in the file. */ //#define POWER_LOSS_RECOVERY #if ENABLED(POWER_LOSS_RECOVERY) //#define POWER_LOSS_PIN 44 // Pin to detect power loss //#define POWER_LOSS_STATE HIGH // State of pin indicating power loss //#define POWER_LOSS_PULL // Set pullup / pulldown as appropriate //#define POWER_LOSS_PURGE_LEN 20 // (mm) Length of filament to purge on resume //#define POWER_LOSS_RETRACT_LEN 10 // (mm) Length of filament to retract on fail. Requires backup power. // Without a POWER_LOSS_PIN the following option helps reduce wear on the SD card, // especially with "vase mode" printing. Set too high and vases cannot be continued. #define POWER_LOSS_MIN_Z_CHANGE 0.05 // (mm) Minimum Z change before saving power-loss data #endif /** * Sort SD file listings in alphabetical order. * * With this option enabled, items on SD cards will be sorted * by name for easier navigation. * * By default... * * - Use the slowest -but safest- method for sorting. * - Folders are sorted to the top. * - The sort key is statically allocated. * - No added G-code (M34) support. * - 40 item sorting limit. (Items after the first 40 are unsorted.) * * SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the * compiler to calculate the worst-case usage and throw an error if the SRAM * limit is exceeded. * * - SDSORT_USES_RAM provides faster sorting via a static directory buffer. * - SDSORT_USES_STACK does the same, but uses a local stack-based buffer. * - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!) * - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!) */ #define SDCARD_SORT_ALPHA // SD Card Sorting options #if ENABLED(SDCARD_SORT_ALPHA) #define SDSORT_LIMIT 40 // Maximum number of sorted items (10-256). Costs 27 bytes each. #define FOLDER_SORTING -1 // -1=above 0=none 1=below #define SDSORT_GCODE false // Allow turning sorting on/off with LCD and M34 g-code. #define SDSORT_USES_RAM false // Pre-allocate a static array for faster pre-sorting. #define SDSORT_USES_STACK false // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.) #define SDSORT_CACHE_NAMES false // Keep sorted items in RAM longer for speedy performance. Most expensive option. #define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use! #define SDSORT_CACHE_VFATS 2 // Maximum number of 13-byte VFAT entries to use for sorting. // Note: Only affects SCROLL_LONG_FILENAMES with SDSORT_CACHE_NAMES but not SDSORT_DYNAMIC_RAM. #endif // This allows hosts to request long names for files and folders with M33 #define LONG_FILENAME_HOST_SUPPORT // Enable this option to scroll long filenames in the SD card menu //#define SCROLL_LONG_FILENAMES // Leave the heaters on after Stop Print (not recommended!) //#define SD_ABORT_NO_COOLDOWN /** * This option allows you to abort SD printing when any endstop is triggered. * This feature must be enabled with "M540 S1" or from the LCD menu. * To have any effect, endstops must be enabled during SD printing. */ //#define SD_ABORT_ON_ENDSTOP_HIT /** * This option makes it easier to print the same SD Card file again. * On print completion the LCD Menu will open with the file selected. * You can just click to start the print, or navigate elsewhere. */ //#define SD_REPRINT_LAST_SELECTED_FILE /** * Auto-report SdCard status with M27 S */ //#define AUTO_REPORT_SD_STATUS /** * Support for USB thumb drives using an Arduino USB Host Shield or * equivalent MAX3421E breakout board. The USB thumb drive will appear * to Marlin as an SD card. * * The MAX3421E can be assigned the same pins as the SD card reader, with * the following pin mapping: * * SCLK, MOSI, MISO --> SCLK, MOSI, MISO * INT --> SD_DETECT_PIN [1] * SS --> SDSS * * [1] On AVR an interrupt-capable pin is best for UHS3 compatibility. */ //#define USB_FLASH_DRIVE_SUPPORT #if ENABLED(USB_FLASH_DRIVE_SUPPORT) #define USB_CS_PIN SDSS #define USB_INTR_PIN SD_DETECT_PIN /** * USB Host Shield Library * * - UHS2 uses no interrupts and has been production-tested * on a LulzBot TAZ Pro with a 32-bit Archim board. * * - UHS3 is newer code with better USB compatibility. But it * is less tested and is known to interfere with Servos. * [1] This requires USB_INTR_PIN to be interrupt-capable. */ //#define USE_UHS3_USB #endif /** * When using a bootloader that supports SD-Firmware-Flashing, * add a menu item to activate SD-FW-Update on the next reboot. * * Requires ATMEGA2560 (Arduino Mega) * * Tested with this bootloader: * https://github.com/FleetProbe/MicroBridge-Arduino-ATMega2560 */ //#define SD_FIRMWARE_UPDATE #if ENABLED(SD_FIRMWARE_UPDATE) #define SD_FIRMWARE_UPDATE_EEPROM_ADDR 0x1FF #define SD_FIRMWARE_UPDATE_ACTIVE_VALUE 0xF0 #define SD_FIRMWARE_UPDATE_INACTIVE_VALUE 0xFF #endif // Add an optimized binary file transfer mode, initiated with 'M28 B1' //#define BINARY_FILE_TRANSFER #if HAS_SDCARD_CONNECTION /** * Set this option to one of the following (or the board's defaults apply): * * LCD - Use the SD drive in the external LCD controller. * ONBOARD - Use the SD drive on the control board. (No SD_DETECT_PIN. M21 to init.) * CUSTOM_CABLE - Use a custom cable to access the SD (as defined in a pins file). * * :[ 'LCD', 'ONBOARD', 'CUSTOM_CABLE' ] */ //#define SDCARD_CONNECTION LCD #endif #endif // SDSUPPORT /** * By default an onboard SD card reader may be shared as a USB mass- * storage device. This option hides the SD card from the host PC. */ //#define NO_SD_HOST_DRIVE // Disable SD Card access over USB (for security). /** * Additional options for Graphical Displays * * Use the optimizations here to improve printing performance, * which can be adversely affected by graphical display drawing, * especially when doing several short moves, and when printing * on DELTA and SCARA machines. * * Some of these options may result in the display lagging behind * controller events, as there is a trade-off between reliable * printing performance versus fast display updates. */ #if HAS_GRAPHICAL_LCD // Show SD percentage next to the progress bar #define DOGM_SD_PERCENT // Enable to save many cycles by drawing a hollow frame on the Info Screen //#define XYZ_HOLLOW_FRAME // Enable to save many cycles by drawing a hollow frame on Menu Screens //#define MENU_HOLLOW_FRAME // A bigger font is available for edit items. Costs 3120 bytes of PROGMEM. // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese. //#define USE_BIG_EDIT_FONT // A smaller font may be used on the Info Screen. Costs 2300 bytes of PROGMEM. // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese. //#define USE_SMALL_INFOFONT // Enable this option and reduce the value to optimize screen updates. // The normal delay is 10µs. Use the lowest value that still gives a reliable display. //#define DOGM_SPI_DELAY_US 5 // Swap the CW/CCW indicators in the graphics overlay //#define OVERLAY_GFX_REVERSE /** * ST7920-based LCDs can emulate a 16 x 4 character display using * the ST7920 character-generator for very fast screen updates. * Enable LIGHTWEIGHT_UI to use this special display mode. * * Since LIGHTWEIGHT_UI has limited space, the position and status * message occupy the same line. Set STATUS_EXPIRE_SECONDS to the * length of time to display the status message before clearing. * * Set STATUS_EXPIRE_SECONDS to zero to never clear the status. * This will prevent position updates from being displayed. */ #if ENABLED(U8GLIB_ST7920) //#define LIGHTWEIGHT_UI #if ENABLED(LIGHTWEIGHT_UI) #define STATUS_EXPIRE_SECONDS 20 #endif #endif /** * Status (Info) Screen customizations * These options may affect code size and screen render time. * Custom status screens can forcibly override these settings. */ //#define STATUS_COMBINE_HEATERS // Use combined heater images instead of separate ones //#define STATUS_HOTEND_NUMBERLESS // Use plain hotend icons instead of numbered ones (with 2+ hotends) #define STATUS_HOTEND_INVERTED // Show solid nozzle bitmaps when heating (Requires STATUS_HOTEND_ANIM) #define STATUS_HOTEND_ANIM // Use a second bitmap to indicate hotend heating #define STATUS_BED_ANIM // Use a second bitmap to indicate bed heating #define STATUS_CHAMBER_ANIM // Use a second bitmap to indicate chamber heating #define STATUS_ALT_BED_BITMAP // Use the alternative bed bitmap //#define STATUS_ALT_FAN_BITMAP // Use the alternative fan bitmap #define STATUS_FAN_FRAMES 4 // :[0,1,2,3,4] Number of fan animation frames //#define STATUS_HEAT_PERCENT // Show heating in a progress bar //#define BOOT_MARLIN_LOGO_SMALL // Show a smaller Marlin logo on the Boot Screen (saving 399 bytes of flash) #define BOOT_MARLIN_LOGO_ANIMATED // Animated Marlin logo. Costs ~‭3260 (or ~940) bytes of PROGMEM. // Frivolous Game Options //#define MARLIN_BRICKOUT //#define MARLIN_INVADERS //#define MARLIN_SNAKE //#define GAMES_EASTER_EGG // Add extra blank lines above the "Games" sub-menu #endif // HAS_GRAPHICAL_LCD // // Lulzbot Touch UI // #if ENABLED(LULZBOT_TOUCH_UI) // Display board used //#define LCD_FTDI_VM800B35A // FTDI 3.5" with FT800 (320x240) //#define LCD_4DSYSTEMS_4DLCD_FT843 // 4D Systems 4.3" (480x272) //#define LCD_HAOYU_FT800CB // Haoyu with 4.3" or 5" (480x272) //#define LCD_HAOYU_FT810CB // Haoyu with 5" (800x480) //#define LCD_ALEPHOBJECTS_CLCD_UI // Aleph Objects Color LCD UI // Correct the resolution if not using the stock TFT panel. //#define TOUCH_UI_320x240 //#define TOUCH_UI_480x272 //#define TOUCH_UI_800x480 // Mappings for boards with a standard RepRapDiscount Display connector //#define AO_EXP1_PINMAP // AlephObjects CLCD UI EXP1 mapping //#define AO_EXP2_PINMAP // AlephObjects CLCD UI EXP2 mapping //#define CR10_TFT_PINMAP // Rudolph Riedel's CR10 pin mapping //#define OTHER_PIN_LAYOUT // Define pins manually below #if ENABLED(OTHER_PIN_LAYOUT) // The pins for CS and MOD_RESET (PD) must be chosen. #define CLCD_MOD_RESET 9 #define CLCD_SPI_CS 10 // If using software SPI, specify pins for SCLK, MOSI, MISO //#define CLCD_USE_SOFT_SPI #if ENABLED(CLCD_USE_SOFT_SPI) #define CLCD_SOFT_SPI_MOSI 11 #define CLCD_SOFT_SPI_MISO 12 #define CLCD_SOFT_SPI_SCLK 13 #endif #endif // Display Orientation. An inverted (i.e. upside-down) display // is supported on the FT800. The FT810 and beyond also support // portrait and mirrored orientations. //#define TOUCH_UI_INVERTED //#define TOUCH_UI_PORTRAIT //#define TOUCH_UI_MIRRORED // UTF8 processing and rendering. // Unsupported characters are shown as '?'. //#define TOUCH_UI_USE_UTF8 #if ENABLED(TOUCH_UI_USE_UTF8) // Western accents support. These accented characters use // combined bitmaps and require relatively little storage. #define TOUCH_UI_UTF8_WESTERN_CHARSET #if ENABLED(TOUCH_UI_UTF8_WESTERN_CHARSET) // Additional character groups. These characters require // full bitmaps and take up considerable storage: //#define TOUCH_UI_UTF8_SUPERSCRIPTS // ¹ ² ³ //#define TOUCH_UI_UTF8_COPYRIGHT // © ® //#define TOUCH_UI_UTF8_GERMANIC // ß //#define TOUCH_UI_UTF8_SCANDINAVIAN // Æ Ð Ø Þ æ ð ø þ //#define TOUCH_UI_UTF8_PUNCTUATION // « » ¿ ¡ //#define TOUCH_UI_UTF8_CURRENCY // ¢ £ ¤ ¥ //#define TOUCH_UI_UTF8_ORDINALS // º ª //#define TOUCH_UI_UTF8_MATHEMATICS // ± × ÷ //#define TOUCH_UI_UTF8_FRACTIONS // ¼ ½ ¾ //#define TOUCH_UI_UTF8_SYMBOLS // µ ¶ ¦ § ¬ #endif #endif // Use a smaller font when labels don't fit buttons #define TOUCH_UI_FIT_TEXT // Allow language selection from menu at run-time (otherwise use LCD_LANGUAGE) //#define LCD_LANGUAGE_1 en //#define LCD_LANGUAGE_2 fr //#define LCD_LANGUAGE_3 de //#define LCD_LANGUAGE_4 es //#define LCD_LANGUAGE_5 it // Use a numeric passcode for "Screen lock" keypad. // (recommended for smaller displays) //#define TOUCH_UI_PASSCODE // Output extra debug info for Touch UI events //#define TOUCH_UI_DEBUG #endif // // FSMC Graphical TFT // #if ENABLED(FSMC_GRAPHICAL_TFT) //#define TFT_MARLINUI_COLOR 0xFFFF // White //#define TFT_MARLINBG_COLOR 0x0000 // Black //#define TFT_DISABLED_COLOR 0x0003 // Almost black //#define TFT_BTCANCEL_COLOR 0xF800 // Red //#define TFT_BTARROWS_COLOR 0xDEE6 // 11011 110111 00110 Yellow //#define TFT_BTOKMENU_COLOR 0x145F // 00010 100010 11111 Cyan #endif // @section safety /** * The watchdog hardware timer will do a reset and disable all outputs * if the firmware gets too overloaded to read the temperature sensors. * * If you find that watchdog reboot causes your AVR board to hang forever, * enable WATCHDOG_RESET_MANUAL to use a custom timer instead of WDTO. * NOTE: This method is less reliable as it can only catch hangups while * interrupts are enabled. */ #define USE_WATCHDOG #if ENABLED(USE_WATCHDOG) //#define WATCHDOG_RESET_MANUAL #endif // @section lcd /** * Babystepping enables movement of the axes by tiny increments without changing * the current position values. This feature is used primarily to adjust the Z * axis in the first layer of a print in real-time. * * Warning: Does not respect endstops! */ //#define BABYSTEPPING #if ENABLED(BABYSTEPPING) //#define BABYSTEP_WITHOUT_HOMING //#define BABYSTEP_XY // Also enable X/Y Babystepping. Not supported on DELTA! #define BABYSTEP_INVERT_Z false // Change if Z babysteps should go the other way #define BABYSTEP_MULTIPLICATOR_Z 1 // Babysteps are very small. Increase for faster motion. #define BABYSTEP_MULTIPLICATOR_XY 1 //#define DOUBLECLICK_FOR_Z_BABYSTEPPING // Double-click on the Status Screen for Z Babystepping. #if ENABLED(DOUBLECLICK_FOR_Z_BABYSTEPPING) #define DOUBLECLICK_MAX_INTERVAL 1250 // Maximum interval between clicks, in milliseconds. // Note: Extra time may be added to mitigate controller latency. //#define BABYSTEP_ALWAYS_AVAILABLE // Allow babystepping at all times (not just during movement). //#define MOVE_Z_WHEN_IDLE // Jump to the move Z menu on doubleclick when printer is idle. #if ENABLED(MOVE_Z_WHEN_IDLE) #define MOVE_Z_IDLE_MULTIPLICATOR 1 // Multiply 1mm by this factor for the move step size. #endif #endif //#define BABYSTEP_DISPLAY_TOTAL // Display total babysteps since last G28 //#define BABYSTEP_ZPROBE_OFFSET // Combine M851 Z and Babystepping #if ENABLED(BABYSTEP_ZPROBE_OFFSET) //#define BABYSTEP_HOTEND_Z_OFFSET // For multiple hotends, babystep relative Z offsets //#define BABYSTEP_ZPROBE_GFX_OVERLAY // Enable graphical overlay on Z-offset editor #endif #endif // @section extruder /** * Linear Pressure Control v1.5 * * Assumption: advance [steps] = k * (delta velocity [steps/s]) * K=0 means advance disabled. * * NOTE: K values for LIN_ADVANCE 1.5 differ from earlier versions! * * Set K around 0.22 for 3mm PLA Direct Drive with ~6.5cm between the drive gear and heatbreak. * Larger K values will be needed for flexible filament and greater distances. * If this algorithm produces a higher speed offset than the extruder can handle (compared to E jerk) * print acceleration will be reduced during the affected moves to keep within the limit. * * See http://marlinfw.org/docs/features/lin_advance.html for full instructions. * Mention @Sebastianv650 on GitHub to alert the author of any issues. */ //#define LIN_ADVANCE #if ENABLED(LIN_ADVANCE) //#define EXTRA_LIN_ADVANCE_K // Enable for second linear advance constants #define LIN_ADVANCE_K 0.22 // Unit: mm compression per 1mm/s extruder speed //#define LA_DEBUG // If enabled, this will generate debug information output over USB. #endif // @section leveling /** * Points to probe for all 3-point Leveling procedures. * Override if the automatically selected points are inadequate. */ #if EITHER(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_UBL) //#define PROBE_PT_1_X 15 //#define PROBE_PT_1_Y 180 //#define PROBE_PT_2_X 15 //#define PROBE_PT_2_Y 20 //#define PROBE_PT_3_X 170 //#define PROBE_PT_3_Y 20 #endif /** * Override MIN_PROBE_EDGE for each side of the build plate * Useful to get probe points to exact positions on targets or * to allow leveling to avoid plate clamps on only specific * sides of the bed. * * If you are replacing the prior *_PROBE_BED_POSITION options, * LEFT and FRONT values in most cases will map directly over * RIGHT and REAR would be the inverse such as * (X/Y_BED_SIZE - RIGHT/BACK_PROBE_BED_POSITION) * * This will allow all positions to match at compilation, however * should the probe position be modified with M851XY then the * probe points will follow. This prevents any change from causing * the probe to be unable to reach any points. */ #if PROBE_SELECTED && !IS_KINEMATIC #define MIN_PROBE_EDGE_LEFT 17 #define MIN_PROBE_EDGE_RIGHT 23 #define MIN_PROBE_EDGE_FRONT 20 #define MIN_PROBE_EDGE_BACK 20 #endif // Was 17, 177, 20, 180 in the old way #if EITHER(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL) // Override the mesh area if the automatic (max) area is too large //#define MESH_MIN_X MESH_INSET //#define MESH_MIN_Y MESH_INSET //#define MESH_MAX_X X_BED_SIZE - (MESH_INSET) //#define MESH_MAX_Y Y_BED_SIZE - (MESH_INSET) #endif /** * Repeatedly attempt G29 leveling until it succeeds. * Stop after G29_MAX_RETRIES attempts. */ //#define G29_RETRY_AND_RECOVER #if ENABLED(G29_RETRY_AND_RECOVER) #define G29_MAX_RETRIES 3 #define G29_HALT_ON_FAILURE /** * Specify the GCODE commands that will be executed when leveling succeeds, * between attempts, and after the maximum number of retries have been tried. */ #define G29_SUCCESS_COMMANDS "M117 Bed leveling done." #define G29_RECOVER_COMMANDS "M117 Probe failed. Rewiping.\nG28\nG12 P0 S12 T0" #define G29_FAILURE_COMMANDS "M117 Bed leveling failed.\nG0 Z10\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nG4 S1" #endif // @section extras // // G2/G3 Arc Support // #define ARC_SUPPORT // Disable this feature to save ~3226 bytes #if ENABLED(ARC_SUPPORT) #define MM_PER_ARC_SEGMENT 1 // Length of each arc segment #define MIN_ARC_SEGMENTS 24 // Minimum number of segments in a complete circle #define N_ARC_CORRECTION 25 // Number of interpolated segments between corrections //#define ARC_P_CIRCLES // Enable the 'P' parameter to specify complete circles //#define CNC_WORKSPACE_PLANES // Allow G2/G3 to operate in XY, ZX, or YZ planes #endif // Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes. //#define BEZIER_CURVE_SUPPORT /** * G38 Probe Target * * This option adds G38.2 and G38.3 (probe towards target) * and optionally G38.4 and G38.5 (probe away from target). * Set MULTIPLE_PROBING for G38 to probe more than once. */ //#define G38_PROBE_TARGET #if ENABLED(G38_PROBE_TARGET) //#define G38_PROBE_AWAY // Include G38.4 and G38.5 to probe away from target #define G38_MINIMUM_MOVE 0.0275 // (mm) Minimum distance that will produce a move. #endif // Moves (or segments) with fewer steps than this will be joined with the next move #define MIN_STEPS_PER_SEGMENT 6 /** * Minimum delay before and after setting the stepper DIR (in ns) * 0 : No delay (Expect at least 10µS since one Stepper ISR must transpire) * 20 : Minimum for TMC2xxx drivers * 200 : Minimum for A4988 drivers * 400 : Minimum for A5984 drivers * 500 : Minimum for LV8729 drivers (guess, no info in datasheet) * 650 : Minimum for DRV8825 drivers * 1500 : Minimum for TB6600 drivers (guess, no info in datasheet) * 15000 : Minimum for TB6560 drivers (guess, no info in datasheet) * * Override the default value based on the driver type set in Configuration.h. */ //#define MINIMUM_STEPPER_POST_DIR_DELAY 650 //#define MINIMUM_STEPPER_PRE_DIR_DELAY 650 /** * Minimum stepper driver pulse width (in µs) * 0 : Smallest possible width the MCU can produce, compatible with TMC2xxx drivers * 0 : Minimum 500ns for LV8729, adjusted in stepper.h * 1 : Minimum for A4988 and A5984 stepper drivers * 2 : Minimum for DRV8825 stepper drivers * 3 : Minimum for TB6600 stepper drivers * 30 : Minimum for TB6560 stepper drivers * * Override the default value based on the driver type set in Configuration.h. */ //#define MINIMUM_STEPPER_PULSE 2 /** * Maximum stepping rate (in Hz) the stepper driver allows * If undefined, defaults to 1MHz / (2 * MINIMUM_STEPPER_PULSE) * 500000 : Maximum for A4988 stepper driver * 400000 : Maximum for TMC2xxx stepper drivers * 250000 : Maximum for DRV8825 stepper driver * 200000 : Maximum for LV8729 stepper driver * 150000 : Maximum for TB6600 stepper driver * 15000 : Maximum for TB6560 stepper driver * * Override the default value based on the driver type set in Configuration.h. */ //#define MAXIMUM_STEPPER_RATE 250000 // @section temperature // Control heater 0 and heater 1 in parallel. //#define HEATERS_PARALLEL //=========================================================================== //================================= Buffers ================================= //=========================================================================== // @section hidden // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2 (e.g. 8, 16, 32) because shifts and ors are used to do the ring-buffering. #if ENABLED(SDSUPPORT) #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else #define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif // @section serial // The ASCII buffer for serial input #define MAX_CMD_SIZE 96 #define BUFSIZE 4 // Transmission to Host Buffer Size // To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0. // To buffer a simple "ok" you need 4 bytes. // For ADVANCED_OK (M105) you need 32 bytes. // For debug-echo: 128 bytes for the optimal speed. // Other output doesn't need to be that speedy. // :[0, 2, 4, 8, 16, 32, 64, 128, 256] #define TX_BUFFER_SIZE 0 // Host Receive Buffer Size // Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough. // To use flow control, set this buffer size to at least 1024 bytes. // :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] //#define RX_BUFFER_SIZE 1024 #if RX_BUFFER_SIZE >= 1024 // Enable to have the controller send XON/XOFF control characters to // the host to signal the RX buffer is becoming full. //#define SERIAL_XON_XOFF #endif // Add M575 G-code to change the baud rate //#define BAUD_RATE_GCODE #if ENABLED(SDSUPPORT) // Enable this option to collect and display the maximum // RX queue usage after transferring a file to SD. //#define SERIAL_STATS_MAX_RX_QUEUED // Enable this option to collect and display the number // of dropped bytes after a file transfer to SD. //#define SERIAL_STATS_DROPPED_RX #endif // Enable an emergency-command parser to intercept certain commands as they // enter the serial receive buffer, so they cannot be blocked. // Currently handles M108, M112, M410 // Does not work on boards using AT90USB (USBCON) processors! //#define EMERGENCY_PARSER // Bad Serial-connections can miss a received command by sending an 'ok' // Therefore some clients abort after 30 seconds in a timeout. // Some other clients start sending commands while receiving a 'wait'. // This "wait" is only sent when the buffer is empty. 1 second is a good value here. //#define NO_TIMEOUTS 1000 // Milliseconds // Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary. //#define ADVANCED_OK // Printrun may have trouble receiving long strings all at once. // This option inserts short delays between lines of serial output. #define SERIAL_OVERRUN_PROTECTION // @section extras /** * Extra Fan Speed * Adds a secondary fan speed for each print-cooling fan. * 'M106 P T3-255' : Set a secondary speed for * 'M106 P T2' : Use the set secondary speed * 'M106 P T1' : Restore the previous fan speed */ //#define EXTRA_FAN_SPEED /** * Firmware-based and LCD-controlled retract * * Add G10 / G11 commands for automatic firmware-based retract / recover. * Use M207 and M208 to define parameters for retract / recover. * * Use M209 to enable or disable auto-retract. * With auto-retract enabled, all G1 E moves within the set range * will be converted to firmware-based retract/recover moves. * * Be sure to turn off auto-retract during filament change. * * Note that M207 / M208 / M209 settings are saved to EEPROM. * */ #define FWRETRACT #if ENABLED(FWRETRACT) #define FWRETRACT_AUTORETRACT // Override slicer retractions #if ENABLED(FWRETRACT_AUTORETRACT) #define MIN_AUTORETRACT 0.1 // (mm) Don't convert E moves under this length #define MAX_AUTORETRACT 10.0 // (mm) Don't convert E moves over this length #endif #define RETRACT_LENGTH 3 // (mm) Default retract length (positive value) #define RETRACT_LENGTH_SWAP 13 // (mm) Default swap retract length (positive value) #define RETRACT_FEEDRATE 45 // (mm/s) Default feedrate for retracting #define RETRACT_ZRAISE 0 // (mm) Default retract Z-raise #define RETRACT_RECOVER_LENGTH 0 // (mm) Default additional recover length (added to retract length on recover) #define RETRACT_RECOVER_LENGTH_SWAP 0 // (mm) Default additional swap recover length (added to retract length on recover from toolchange) #define RETRACT_RECOVER_FEEDRATE 8 // (mm/s) Default feedrate for recovering from retraction #define RETRACT_RECOVER_FEEDRATE_SWAP 8 // (mm/s) Default feedrate for recovering from swap retraction #if ENABLED(MIXING_EXTRUDER) //#define RETRACT_SYNC_MIXING // Retract and restore all mixing steppers simultaneously #endif #endif /** * Universal tool change settings. * Applies to all types of extruders except where explicitly noted. */ #if EXTRUDERS > 1 // Z raise distance for tool-change, as needed for some extruders #define TOOLCHANGE_ZRAISE 2 // (mm) //#define TOOLCHANGE_NO_RETURN // Never return to the previous position on tool-change // Retract and prime filament on tool-change //#define TOOLCHANGE_FILAMENT_SWAP #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) #define TOOLCHANGE_FIL_SWAP_LENGTH 12 // (mm) #define TOOLCHANGE_FIL_EXTRA_PRIME 2 // (mm) #define TOOLCHANGE_FIL_SWAP_RETRACT_SPEED 3600 // (mm/m) #define TOOLCHANGE_FIL_SWAP_PRIME_SPEED 3600 // (mm/m) #endif /** * Position to park head during tool change. * Doesn't apply to SWITCHING_TOOLHEAD, DUAL_X_CARRIAGE, or PARKING_EXTRUDER */ //#define TOOLCHANGE_PARK #if ENABLED(TOOLCHANGE_PARK) #define TOOLCHANGE_PARK_XY { X_MIN_POS + 10, Y_MIN_POS + 10 } #define TOOLCHANGE_PARK_XY_FEEDRATE 6000 // (mm/m) #endif #endif /** * Advanced Pause * Experimental feature for filament change support and for parking the nozzle when paused. * Adds the GCode M600 for initiating filament change. * If PARK_HEAD_ON_PAUSE enabled, adds the GCode M125 to pause printing and park the nozzle. * * Requires an LCD display. * Requires NOZZLE_PARK_FEATURE. * This feature is required for the default FILAMENT_RUNOUT_SCRIPT. */ #define ADVANCED_PAUSE_FEATURE #if ENABLED(ADVANCED_PAUSE_FEATURE) #define PAUSE_PARK_RETRACT_FEEDRATE 40 // (mm/s) Initial retract feedrate. #define PAUSE_PARK_RETRACT_LENGTH 2 // (mm) Initial retract. // This short retract is done immediately, before parking the nozzle. #define FILAMENT_CHANGE_UNLOAD_FEEDRATE 40 // (mm/s) Unload filament feedrate. This can be pretty fast. #define FILAMENT_CHANGE_UNLOAD_ACCEL 1000 // (mm/s^2) Lower acceleration may allow a faster feedrate. #define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // (mm) The length of filament for a complete unload. // For Bowden, the full length of the tube and nozzle. // For direct drive, the full length of the nozzle. // Set to 0 for manual unloading. #define FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE 6 // (mm/s) Slow move when starting load. #define FILAMENT_CHANGE_SLOW_LOAD_LENGTH 10 // (mm) Slow length, to allow time to insert material. // 0 to disable start loading and skip to fast load only #define FILAMENT_CHANGE_FAST_LOAD_FEEDRATE 20 // (mm/s) Load filament feedrate. This can be pretty fast. #define FILAMENT_CHANGE_FAST_LOAD_ACCEL 1000 // (mm/s^2) Lower acceleration may allow a faster feedrate. #define FILAMENT_CHANGE_FAST_LOAD_LENGTH 50 // (mm) Load length of filament, from extruder gear to nozzle. // For Bowden, the full length of the tube and nozzle. // For direct drive, the full length of the nozzle. //#define ADVANCED_PAUSE_CONTINUOUS_PURGE // Purge continuously up to the purge length until interrupted. #define ADVANCED_PAUSE_PURGE_FEEDRATE 5 // (mm/s) Extrude feedrate (after loading). Should be slower than load feedrate. #define ADVANCED_PAUSE_PURGE_LENGTH 100 // (mm) Length to extrude after loading. // Set to 0 for manual extrusion. // Filament can be extruded repeatedly from the Filament Change menu // until extrusion is consistent, and to purge old filament. #define ADVANCED_PAUSE_RESUME_PRIME 1 // (mm) Extra distance to prime nozzle after returning from park. #define ADVANCED_PAUSE_FANS_PAUSE // Turn off print-cooling fans while the machine is paused. // Filament Unload does a Retract, Delay, and Purge first: #define FILAMENT_UNLOAD_RETRACT_LENGTH 2 // (mm) Unload initial retract length. #define FILAMENT_UNLOAD_DELAY 2000 // (ms) Delay for the filament to cool after retract. #define FILAMENT_UNLOAD_PURGE_LENGTH 8 // (mm) An unretract is done, then this length is purged. #define PAUSE_PARK_NOZZLE_TIMEOUT 120 // (seconds) Time limit before the nozzle is turned off for safety. #define FILAMENT_CHANGE_ALERT_BEEPS 3 // Number of alert beeps to play when a response is needed. #define PAUSE_PARK_NO_STEPPER_TIMEOUT // Enable for XYZ steppers to stay powered on during filament change. #define PARK_HEAD_ON_PAUSE // Park the nozzle during pause and filament change. //#define HOME_BEFORE_FILAMENT_CHANGE // Ensure homing has been completed prior to parking for filament change #define FILAMENT_LOAD_UNLOAD_GCODES // Add M701/M702 Load/Unload G-codes, plus Load/Unload in the LCD Prepare menu. //#define FILAMENT_UNLOAD_ALL_EXTRUDERS // Allow M702 to unload all extruders above a minimum target temp (as set by M302) #endif // @section tmc /** * TMC26X Stepper Driver options * * The TMC26XStepper library is required for this stepper driver. * https://github.com/trinamic/TMC26XStepper */ #if HAS_DRIVER(TMC26X) #if AXIS_DRIVER_TYPE_X(TMC26X) #define X_MAX_CURRENT 1000 // (mA) #define X_SENSE_RESISTOR 91 // (mOhms) #define X_MICROSTEPS 16 // Number of microsteps #endif #if AXIS_DRIVER_TYPE_X2(TMC26X) #define X2_MAX_CURRENT 1000 #define X2_SENSE_RESISTOR 91 #define X2_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_Y(TMC26X) #define Y_MAX_CURRENT 1000 #define Y_SENSE_RESISTOR 91 #define Y_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_Y2(TMC26X) #define Y2_MAX_CURRENT 1000 #define Y2_SENSE_RESISTOR 91 #define Y2_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_Z(TMC26X) #define Z_MAX_CURRENT 1000 #define Z_SENSE_RESISTOR 91 #define Z_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_Z2(TMC26X) #define Z2_MAX_CURRENT 1000 #define Z2_SENSE_RESISTOR 91 #define Z2_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_Z3(TMC26X) #define Z3_MAX_CURRENT 1000 #define Z3_SENSE_RESISTOR 91 #define Z3_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E0(TMC26X) #define E0_MAX_CURRENT 1000 #define E0_SENSE_RESISTOR 91 #define E0_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E1(TMC26X) #define E1_MAX_CURRENT 1000 #define E1_SENSE_RESISTOR 91 #define E1_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E2(TMC26X) #define E2_MAX_CURRENT 1000 #define E2_SENSE_RESISTOR 91 #define E2_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E3(TMC26X) #define E3_MAX_CURRENT 1000 #define E3_SENSE_RESISTOR 91 #define E3_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E4(TMC26X) #define E4_MAX_CURRENT 1000 #define E4_SENSE_RESISTOR 91 #define E4_MICROSTEPS 16 #endif #if AXIS_DRIVER_TYPE_E5(TMC26X) #define E5_MAX_CURRENT 1000 #define E5_SENSE_RESISTOR 91 #define E5_MICROSTEPS 16 #endif #endif // TMC26X // @section tmc_smart /** * To use TMC2130, TMC2160, TMC2660, TMC5130, TMC5160 stepper drivers in SPI mode * connect your SPI pins to the hardware SPI interface on your board and define * the required CS pins in your `pins_MYBOARD.h` file. (e.g., RAMPS 1.4 uses AUX3 * pins `X_CS_PIN 53`, `Y_CS_PIN 49`, etc.). * You may also use software SPI if you wish to use general purpose IO pins. * * To use TMC2208 stepper UART-configurable stepper drivers connect #_SERIAL_TX_PIN * to the driver side PDN_UART pin with a 1K resistor. * To use the reading capabilities, also connect #_SERIAL_RX_PIN to PDN_UART without * a resistor. * The drivers can also be used with hardware serial. * * TMCStepper library is required to use TMC stepper drivers. * https://github.com/teemuatlut/TMCStepper */ #if HAS_TRINAMIC #define HOLD_MULTIPLIER 0.5 // Scales down the holding current from run current #define INTERPOLATE true // Interpolate X/Y/Z_MICROSTEPS to 256 #if AXIS_IS_TMC(X) #define X_CURRENT 600 // (mA) RMS current. Multiply by 1.414 for peak current. #define X_MICROSTEPS 16 // 0..256 #define X_RSENSE 0.11 #define X_CHAIN_POS -1 // <=0 : Not chained. 1 : MCU MOSI connected. 2 : Next in chain, ... #endif #if AXIS_IS_TMC(X2) #define X2_CURRENT 1 #define X2_MICROSTEPS 16 #define X2_RSENSE 0.11 #define X2_CHAIN_POS -1 #endif #if AXIS_IS_TMC(Y) #define Y_CURRENT 600 #define Y_MICROSTEPS 16 #define Y_RSENSE 0.11 #define Y_CHAIN_POS -1 #endif #if AXIS_IS_TMC(Y2) #define Y2_CURRENT 1 #define Y2_MICROSTEPS 16 #define Y2_RSENSE 0.11 #define Y2_CHAIN_POS -1 #endif #if AXIS_IS_TMC(Z) #define Z_CURRENT 1000 #define Z_MICROSTEPS 16 #define Z_RSENSE 0.11 #define Z_CHAIN_POS -1 #endif #if AXIS_IS_TMC(Z2) #define Z2_CURRENT 1 #define Z2_MICROSTEPS 16 #define Z2_RSENSE 0.11 #define Z2_CHAIN_POS -1 #endif #if AXIS_IS_TMC(Z3) #define Z3_CURRENT 1 #define Z3_MICROSTEPS 16 #define Z3_RSENSE 0.11 #define Z3_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E0) #define E0_CURRENT 500 #define E0_MICROSTEPS 16 #define E0_RSENSE 0.11 #define E0_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E1) #define E1_CURRENT 1 #define E1_MICROSTEPS 16 #define E1_RSENSE 0.11 #define E1_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E2) #define E2_CURRENT 1 #define E2_MICROSTEPS 16 #define E2_RSENSE 0.11 #define E2_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E3) #define E3_CURRENT 1 #define E3_MICROSTEPS 16 #define E3_RSENSE 0.11 #define E3_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E4) #define E4_CURRENT 1 #define E4_MICROSTEPS 16 #define E4_RSENSE 0.11 #define E4_CHAIN_POS -1 #endif #if AXIS_IS_TMC(E5) #define E5_CURRENT 1 #define E5_MICROSTEPS 16 #define E5_RSENSE 0.11 #define E5_CHAIN_POS -1 #endif /** * Override default SPI pins for TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160 drivers here. * The default pins can be found in your board's pins file. */ //#define X_CS_PIN -1 //#define Y_CS_PIN -1 //#define Z_CS_PIN -1 //#define X2_CS_PIN -1 //#define Y2_CS_PIN -1 //#define Z2_CS_PIN -1 //#define Z3_CS_PIN -1 //#define E0_CS_PIN -1 //#define E1_CS_PIN -1 //#define E2_CS_PIN -1 //#define E3_CS_PIN -1 //#define E4_CS_PIN -1 //#define E5_CS_PIN -1 /** * Software option for SPI driven drivers (TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160). * The default SW SPI pins are defined the respective pins files, * but you can override or define them here. */ //#define TMC_USE_SW_SPI //#define TMC_SW_MOSI -1 //#define TMC_SW_MISO -1 //#define TMC_SW_SCK -1 /** * Four TMC2209 drivers can use the same HW/SW serial port with hardware configured addresses. * Set the address using jumpers on pins MS1 and MS2. * Address | MS1 | MS2 * 0 | LOW | LOW * 1 | HIGH | LOW * 2 | LOW | HIGH * 3 | HIGH | HIGH * * Set *_SERIAL_TX_PIN and *_SERIAL_RX_PIN to match for all drivers * on the same serial port, either here or in your board's pins file. */ #define X_SLAVE_ADDRESS 0 #define Y_SLAVE_ADDRESS 0 #define Z_SLAVE_ADDRESS 0 #define X2_SLAVE_ADDRESS 0 #define Y2_SLAVE_ADDRESS 0 #define Z2_SLAVE_ADDRESS 0 #define Z3_SLAVE_ADDRESS 0 #define E0_SLAVE_ADDRESS 0 #define E1_SLAVE_ADDRESS 0 #define E2_SLAVE_ADDRESS 0 #define E3_SLAVE_ADDRESS 0 #define E4_SLAVE_ADDRESS 0 #define E5_SLAVE_ADDRESS 0 /** * Software enable * * Use for drivers that do not use a dedicated enable pin, but rather handle the same * function through a communication line such as SPI or UART. */ //#define SOFTWARE_DRIVER_ENABLE /** * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only * Use Trinamic's ultra quiet stepping mode. * When disabled, Marlin will use spreadCycle stepping mode. */ #define STEALTHCHOP_XY #define STEALTHCHOP_Z //#define STEALTHCHOP_E /** * Optimize spreadCycle chopper parameters by using predefined parameter sets * or with the help of an example included in the library. * Provided parameter sets are * CHOPPER_DEFAULT_12V * CHOPPER_DEFAULT_19V * CHOPPER_DEFAULT_24V * CHOPPER_DEFAULT_36V * CHOPPER_PRUSAMK3_24V // Imported parameters from the official Prusa firmware for MK3 (24V) * CHOPPER_MARLIN_119 // Old defaults from Marlin v1.1.9 * * Define you own with * { , , hysteresis_start[1..8] } */ #define CHOPPER_TIMING CHOPPER_DEFAULT_12V /** * Monitor Trinamic drivers for error conditions, * like overtemperature and short to ground. * In the case of overtemperature Marlin can decrease the driver current until error condition clears. * Other detected conditions can be used to stop the current print. * Relevant g-codes: * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. * M911 - Report stepper driver overtemperature pre-warn condition. * M912 - Clear stepper driver overtemperature pre-warn condition flag. * M122 - Report driver parameters (Requires TMC_DEBUG) */ #define MONITOR_DRIVER_STATUS #if ENABLED(MONITOR_DRIVER_STATUS) #define CURRENT_STEP_DOWN 50 // [mA] #define REPORT_CURRENT_CHANGE #define STOP_ON_ERROR #endif /** * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only * The driver will switch to spreadCycle when stepper speed is over HYBRID_THRESHOLD. * This mode allows for faster movements at the expense of higher noise levels. * STEALTHCHOP_(XY|Z|E) must be enabled to use HYBRID_THRESHOLD. * M913 X/Y/Z/E to live tune the setting */ #define HYBRID_THRESHOLD #define X_HYBRID_THRESHOLD 150 // [mm/s] #define X2_HYBRID_THRESHOLD 100 #define Y_HYBRID_THRESHOLD 150 #define Y2_HYBRID_THRESHOLD 100 #define Z_HYBRID_THRESHOLD 3 #define Z2_HYBRID_THRESHOLD 3 #define Z3_HYBRID_THRESHOLD 3 #define E0_HYBRID_THRESHOLD 30 #define E1_HYBRID_THRESHOLD 30 #define E2_HYBRID_THRESHOLD 30 #define E3_HYBRID_THRESHOLD 30 #define E4_HYBRID_THRESHOLD 30 #define E5_HYBRID_THRESHOLD 30 /** * Use StallGuard2 to home / probe X, Y, Z. * * TMC2130, TMC2160, TMC2209, TMC2660, TMC5130, and TMC5160 only * Connect the stepper driver's DIAG1 pin to the X/Y endstop pin. * X, Y, and Z homing will always be done in spreadCycle mode. * * X/Y/Z_STALL_SENSITIVITY is the default stall threshold. * Use M914 X Y Z to set the stall threshold at runtime: * * Sensitivity TMC2209 Others * HIGHEST 255 -64 (Too sensitive => False positive) * LOWEST 0 63 (Too insensitive => No trigger) * * It is recommended to set [XYZ]_HOME_BUMP_MM to 0. * * SPI_ENDSTOPS *** Beta feature! *** TMC2130 Only *** * Poll the driver through SPI to determine load when homing. * Removes the need for a wire from DIAG1 to an endstop pin. * * IMPROVE_HOMING_RELIABILITY tunes acceleration and jerk when * homing and adds a guard period for endstop triggering. * * TMC2209 requires STEALTHCHOP enabled for SENSORLESS_HOMING */ //#define SENSORLESS_HOMING // StallGuard capable drivers only /** * Use StallGuard2 to probe the bed with the nozzle. * * CAUTION: This could cause damage to machines that use a lead screw or threaded rod * to move the Z axis. Take extreme care when attempting to enable this feature. */ //#define SENSORLESS_PROBING // StallGuard capable drivers only #if EITHER(SENSORLESS_HOMING, SENSORLESS_PROBING) // TMC2209: 0...255. TMC2130: -64...63 #define X_STALL_SENSITIVITY 8 #define X2_STALL_SENSITIVITY X_STALL_SENSITIVITY #define Y_STALL_SENSITIVITY 8 //#define Z_STALL_SENSITIVITY 8 //#define SPI_ENDSTOPS // TMC2130 only //#define IMPROVE_HOMING_RELIABILITY #endif /** * Beta feature! * Create a 50/50 square wave step pulse optimal for stepper drivers. */ //#define SQUARE_WAVE_STEPPING /** * Enable M122 debugging command for TMC stepper drivers. * M122 S0/1 will enable continous reporting. */ #define TMC_DEBUG /** * You can set your own advanced settings by filling in predefined functions. * A list of available functions can be found on the library github page * https://github.com/teemuatlut/TMCStepper * * Example: * #define TMC_ADV() { \ * stepperX.diag0_temp_prewarn(1); \ * stepperY.interpolate(0); \ * } */ #define TMC_ADV() { } #endif // HAS_TRINAMIC // @section L6470 /** * L6470 Stepper Driver options * * Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * https://github.com/ameyer/Arduino-L6470 * * Requires the following to be defined in your pins_YOUR_BOARD file * L6470_CHAIN_SCK_PIN * L6470_CHAIN_MISO_PIN * L6470_CHAIN_MOSI_PIN * L6470_CHAIN_SS_PIN * L6470_RESET_CHAIN_PIN (optional) */ #if HAS_DRIVER(L6470) //#define L6470_CHITCHAT // Display additional status info #if AXIS_DRIVER_TYPE_X(L6470) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper #define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) #endif #if AXIS_DRIVER_TYPE_X2(L6470) #define X2_MICROSTEPS 128 #define X2_OVERCURRENT 2000 #define X2_STALLCURRENT 1500 #define X2_MAX_VOLTAGE 127 #define X2_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_Y(L6470) #define Y_MICROSTEPS 128 #define Y_OVERCURRENT 2000 #define Y_STALLCURRENT 1500 #define Y_MAX_VOLTAGE 127 #define Y_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_Y2(L6470) #define Y2_MICROSTEPS 128 #define Y2_OVERCURRENT 2000 #define Y2_STALLCURRENT 1500 #define Y2_MAX_VOLTAGE 127 #define Y2_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_Z(L6470) #define Z_MICROSTEPS 128 #define Z_OVERCURRENT 2000 #define Z_STALLCURRENT 1500 #define Z_MAX_VOLTAGE 127 #define Z_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_Z2(L6470) #define Z2_MICROSTEPS 128 #define Z2_OVERCURRENT 2000 #define Z2_STALLCURRENT 1500 #define Z2_MAX_VOLTAGE 127 #define Z2_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_Z3(L6470) #define Z3_MICROSTEPS 128 #define Z3_OVERCURRENT 2000 #define Z3_STALLCURRENT 1500 #define Z3_MAX_VOLTAGE 127 #define Z3_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E0(L6470) #define E0_MICROSTEPS 128 #define E0_OVERCURRENT 2000 #define E0_STALLCURRENT 1500 #define E0_MAX_VOLTAGE 127 #define E0_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E1(L6470) #define E1_MICROSTEPS 128 #define E1_OVERCURRENT 2000 #define E1_STALLCURRENT 1500 #define E1_MAX_VOLTAGE 127 #define E1_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E2(L6470) #define E2_MICROSTEPS 128 #define E2_OVERCURRENT 2000 #define E2_STALLCURRENT 1500 #define E2_MAX_VOLTAGE 127 #define E2_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E3(L6470) #define E3_MICROSTEPS 128 #define E3_OVERCURRENT 2000 #define E3_STALLCURRENT 1500 #define E3_MAX_VOLTAGE 127 #define E3_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E4(L6470) #define E4_MICROSTEPS 128 #define E4_OVERCURRENT 2000 #define E4_STALLCURRENT 1500 #define E4_MAX_VOLTAGE 127 #define E4_CHAIN_POS -1 #endif #if AXIS_DRIVER_TYPE_E5(L6470) #define E5_MICROSTEPS 128 #define E5_OVERCURRENT 2000 #define E5_STALLCURRENT 1500 #define E5_MAX_VOLTAGE 127 #define E5_CHAIN_POS -1 #endif /** * Monitor L6470 drivers for error conditions like over temperature and over current. * In the case of over temperature Marlin can decrease the drive until the error condition clears. * Other detected conditions can be used to stop the current print. * Relevant g-codes: * M906 - I1/2/3/4/5 Set or get motor drive level using axis codes X, Y, Z, E. Report values if no axis codes given. * I not present or I0 or I1 - X, Y, Z or E0 * I2 - X2, Y2, Z2 or E1 * I3 - Z3 or E3 * I4 - E4 * I5 - E5 * M916 - Increase drive level until get thermal warning * M917 - Find minimum current thresholds * M918 - Increase speed until max or error * M122 S0/1 - Report driver parameters */ //#define MONITOR_L6470_DRIVER_STATUS #if ENABLED(MONITOR_L6470_DRIVER_STATUS) #define KVAL_HOLD_STEP_DOWN 1 //#define L6470_STOP_ON_ERROR #endif #endif // L6470 /** * TWI/I2C BUS * * This feature is an EXPERIMENTAL feature so it shall not be used on production * machines. Enabling this will allow you to send and receive I2C data from slave * devices on the bus. * * ; Example #1 * ; This macro send the string "Marlin" to the slave device with address 0x63 (99) * ; It uses multiple M260 commands with one B arg * M260 A99 ; Target slave address * M260 B77 ; M * M260 B97 ; a * M260 B114 ; r * M260 B108 ; l * M260 B105 ; i * M260 B110 ; n * M260 S1 ; Send the current buffer * * ; Example #2 * ; Request 6 bytes from slave device with address 0x63 (99) * M261 A99 B5 * * ; Example #3 * ; Example serial output of a M261 request * echo:i2c-reply: from:99 bytes:5 data:hello */ // @section i2cbus //#define EXPERIMENTAL_I2CBUS #define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave // @section extras /** * Photo G-code * Add the M240 G-code to take a photo. * The photo can be triggered by a digital pin or a physical movement. */ //#define PHOTO_GCODE #if ENABLED(PHOTO_GCODE) // A position to move to (and raise Z) before taking the photo //#define PHOTO_POSITION { X_MAX_POS - 5, Y_MAX_POS, 0 } // { xpos, ypos, zraise } (M240 X Y Z) //#define PHOTO_DELAY_MS 100 // (ms) Duration to pause before moving back (M240 P) //#define PHOTO_RETRACT_MM 6.5 // (mm) E retract/recover for the photo move (M240 R S) // Canon RC-1 or homebrew digital camera trigger // Data from: http://www.doc-diy.net/photo/rc-1_hacked/ //#define PHOTOGRAPH_PIN 23 // Canon Hack Development Kit // http://captain-slow.dk/2014/03/09/3d-printing-timelapses/ //#define CHDK_PIN 4 // Optional second move with delay to trigger the camera shutter //#define PHOTO_SWITCH_POSITION { X_MAX_POS, Y_MAX_POS } // { xpos, ypos } (M240 I J) // Duration to hold the switch or keep CHDK_PIN high //#define PHOTO_SWITCH_MS 50 // (ms) (M240 D) #endif /** * Spindle & Laser control * * Add the M3, M4, and M5 commands to turn the spindle/laser on and off, and * to set spindle speed, spindle direction, and laser power. * * SuperPid is a router/spindle speed controller used in the CNC milling community. * Marlin can be used to turn the spindle on and off. It can also be used to set * the spindle speed from 5,000 to 30,000 RPM. * * You'll need to select a pin for the ON/OFF function and optionally choose a 0-5V * hardware PWM pin for the speed control and a pin for the rotation direction. * * See http://marlinfw.org/docs/configuration/laser_spindle.html for more config details. */ //#define SPINDLE_FEATURE //#define LASER_FEATURE #if EITHER(SPINDLE_FEATURE, LASER_FEATURE) #define SPINDLE_LASER_ACTIVE_HIGH false // Set to "true" if the on/off function is active HIGH #define SPINDLE_LASER_PWM true // Set to "true" if your controller supports setting the speed/power #define SPINDLE_LASER_PWM_INVERT true // Set to "true" if the speed/power goes up when you want it to go slower #define SPINDLE_LASER_POWERUP_DELAY 5000 // (ms) Delay to allow the spindle/laser to come up to speed/power #define SPINDLE_LASER_POWERDOWN_DELAY 5000 // (ms) Delay to allow the spindle to stop #if ENABLED(SPINDLE_FEATURE) //#define SPINDLE_CHANGE_DIR // Enable if your spindle controller can change spindle direction #define SPINDLE_CHANGE_DIR_STOP // Enable if the spindle should stop before changing spin direction #define SPINDLE_INVERT_DIR false // Set to "true" if the spin direction is reversed /** * The M3 & M4 commands use the following equation to convert PWM duty cycle to speed/power * * SPEED/POWER = PWM duty cycle * SPEED_POWER_SLOPE + SPEED_POWER_INTERCEPT * where PWM duty cycle varies from 0 to 255 * * set the following for your controller (ALL MUST BE SET) */ #define SPEED_POWER_SLOPE 118.4 #define SPEED_POWER_INTERCEPT 0 #define SPEED_POWER_MIN 5000 #define SPEED_POWER_MAX 30000 // SuperPID router controller 0 - 30,000 RPM #else #define SPEED_POWER_SLOPE 0.3922 #define SPEED_POWER_INTERCEPT 0 #define SPEED_POWER_MIN 10 #define SPEED_POWER_MAX 100 // 0-100% #endif #endif /** * Coolant Control * * Add the M7, M8, and M9 commands to turn mist or flood coolant on and off. * * Note: COOLANT_MIST_PIN and/or COOLANT_FLOOD_PIN must also be defined. */ //#define COOLANT_CONTROL #if ENABLED(COOLANT_CONTROL) #define COOLANT_MIST // Enable if mist coolant is present #define COOLANT_FLOOD // Enable if flood coolant is present #define COOLANT_MIST_INVERT false // Set "true" if the on/off function is reversed #define COOLANT_FLOOD_INVERT false // Set "true" if the on/off function is reversed #endif /** * Filament Width Sensor * * Measures the filament width in real-time and adjusts * flow rate to compensate for any irregularities. * * Also allows the measured filament diameter to set the * extrusion rate, so the slicer only has to specify the * volume. * * Only a single extruder is supported at this time. * * 34 RAMPS_14 : Analog input 5 on the AUX2 connector * 81 PRINTRBOARD : Analog input 2 on the Exp1 connector (version B,C,D,E) * 301 RAMBO : Analog input 3 * * Note: May require analog pins to be defined for other boards. */ //#define FILAMENT_WIDTH_SENSOR #if ENABLED(FILAMENT_WIDTH_SENSOR) #define FILAMENT_SENSOR_EXTRUDER_NUM 0 // Index of the extruder that has the filament sensor. :[0,1,2,3,4] #define MEASUREMENT_DELAY_CM 14 // (cm) The distance from the filament sensor to the melting chamber #define FILWIDTH_ERROR_MARGIN 1.0 // (mm) If a measurement differs too much from nominal width ignore it #define MAX_MEASUREMENT_DELAY 20 // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM. #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially // Display filament width on the LCD status line. Status messages will expire after 5 seconds. //#define FILAMENT_LCD_DISPLAY #endif /** * CNC Coordinate Systems * * Enables G53 and G54-G59.3 commands to select coordinate systems * and G92.1 to reset the workspace to native machine space. */ //#define CNC_COORDINATE_SYSTEMS /** * Auto-report temperatures with M155 S */ #define AUTO_REPORT_TEMPERATURES /** * Include capabilities in M115 output */ #define EXTENDED_CAPABILITIES_REPORT /** * Expected Printer Check * Add the M16 G-code to compare a string to the MACHINE_NAME. * M16 with a non-matching string causes the printer to halt. */ //#define EXPECTED_PRINTER_CHECK /** * Disable all Volumetric extrusion options */ //#define NO_VOLUMETRICS #if DISABLED(NO_VOLUMETRICS) /** * Volumetric extrusion default state * Activate to make volumetric extrusion the default method, * with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter. * * M200 D0 to disable, M200 Dn to set a new diameter. */ //#define VOLUMETRIC_DEFAULT_ON #endif /** * Enable this option for a leaner build of Marlin that removes all * workspace offsets, simplifying coordinate transformations, leveling, etc. * * - M206 and M428 are disabled. * - G92 will revert to its behavior from Marlin 1.0. */ //#define NO_WORKSPACE_OFFSETS /** * Set the number of proportional font spaces required to fill up a typical character space. * This can help to better align the output of commands like `G29 O` Mesh Output. * * For clients that use a fixed-width font (like OctoPrint), leave this set to 1.0. * Otherwise, adjust according to your client and font. */ #define PROPORTIONAL_FONT_RATIO 1.0 /** * Spend 28 bytes of SRAM to optimize the GCode parser */ #define FASTER_GCODE_PARSER /** * CNC G-code options * Support CNC-style G-code dialects used by laser cutters, drawing machine cams, etc. * Note that G0 feedrates should be used with care for 3D printing (if used at all). * High feedrates may cause ringing and harm print quality. */ //#define PAREN_COMMENTS // Support for parentheses-delimited comments //#define GCODE_MOTION_MODES // Remember the motion mode (G0 G1 G2 G3 G5 G38.X) and apply for X Y Z E F, etc. // Enable and set a (default) feedrate for all G0 moves //#define G0_FEEDRATE 3000 // (mm/m) #ifdef G0_FEEDRATE //#define VARIABLE_G0_FEEDRATE // The G0 feedrate is set by F in G0 motion mode #endif /** * Startup commands * * Execute certain G-code commands immediately after power-on. */ //#define STARTUP_COMMANDS "M17 Z" /** * G-code Macros * * Add G-codes M810-M819 to define and run G-code macros. * Macros are not saved to EEPROM. */ //#define GCODE_MACROS #if ENABLED(GCODE_MACROS) #define GCODE_MACROS_SLOTS 5 // Up to 10 may be used #define GCODE_MACROS_SLOT_SIZE 50 // Maximum length of a single macro #endif /** * User-defined menu items that execute custom GCode */ #define CUSTOM_USER_MENUS #if ENABLED(CUSTOM_USER_MENUS) #define CUSTOM_USER_MENU_TITLE "Custom Commands" //#define USER_SCRIPT_DONE "M117 User Script Done" #define USER_SCRIPT_AUDIBLE_FEEDBACK #define USER_SCRIPT_RETURN // Return to status screen after a script #define USER_DESC_1 "Preheat for " PREHEAT_1_LABEL #define USER_GCODE_1 "M140 S" STRINGIFY(PREHEAT_1_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_1_TEMP_HOTEND) #define USER_DESC_2 "Preheat for " PREHEAT_2_LABEL #define USER_GCODE_2 "M140 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_2_TEMP_HOTEND) #define USER_DESC_3 "Preheat for " PREHEAT_3_LABEL #define USER_GCODE_3 "M140 S" STRINGIFY(PREHEAT_3_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_3_TEMP_HOTEND) #define USER_DESC_4 "Home" #define USER_GCODE_4 "G28" #define USER_DESC_5 "Purge 100 mm" #define USER_GCODE_5 "G92 E0\nG1 E100 F300" #endif /** * Host Action Commands * * Define host streamer action commands in compliance with the standard. * * See https://reprap.org/wiki/G-code#Action_commands * Common commands ........ poweroff, pause, paused, resume, resumed, cancel * G29_RETRY_AND_RECOVER .. probe_rewipe, probe_failed * * Some features add reason codes to extend these commands. * * Host Prompt Support enables Marlin to use the host for user prompts so * filament runout and other processes can be managed from the host side. */ //#define HOST_ACTION_COMMANDS #if ENABLED(HOST_ACTION_COMMANDS) //#define HOST_PROMPT_SUPPORT #endif /** * Cancel Objects * * Implement M486 to allow Marlin to skip objects */ //#define CANCEL_OBJECTS /** * I2C position encoders for closed loop control. * Developed by Chris Barr at Aus3D. * * Wiki: http://wiki.aus3d.com.au/Magnetic_Encoder * Github: https://github.com/Aus3D/MagneticEncoder * * Supplier: http://aus3d.com.au/magnetic-encoder-module * Alternative Supplier: http://reliabuild3d.com/ * * Reliabuild encoders have been modified to improve reliability. */ //#define I2C_POSITION_ENCODERS #if ENABLED(I2C_POSITION_ENCODERS) #define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5 // encoders supported currently. #define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200. #define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. _AXIS. #define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or- // I2CPE_ENC_TYPE_ROTARY. #define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for // 1mm poles. For linear encoders this is ticks / mm, // for rotary encoders this is ticks / revolution. //#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper // steps per full revolution (motor steps/rev * microstepping) //#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel. #define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_MICROSTEP // Type of error error correction. #define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the // printer will attempt to correct the error; errors // smaller than this are ignored to minimize effects of // measurement noise / latency (filter). #define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2. #define I2CPE_ENC_2_AXIS Y_AXIS #define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR #define I2CPE_ENC_2_TICKS_UNIT 2048 //#define I2CPE_ENC_2_TICKS_REV (16 * 200) //#define I2CPE_ENC_2_INVERT #define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_MICROSTEP #define I2CPE_ENC_2_EC_THRESH 0.10 #define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options #define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below. #define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4. #define I2CPE_ENC_4_AXIS E_AXIS #define I2CPE_ENC_5_ADDR 34 // Encoder 5. #define I2CPE_ENC_5_AXIS E_AXIS // Default settings for encoders which are enabled, but without settings configured above. #define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR #define I2CPE_DEF_ENC_TICKS_UNIT 2048 #define I2CPE_DEF_TICKS_REV (16 * 200) #define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE #define I2CPE_DEF_EC_THRESH 0.1 //#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given // axis after which the printer will abort. Comment out to // disable abort behavior. #define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault // for this amount of time (in ms) before the encoder // is trusted again. /** * Position is checked every time a new command is executed from the buffer but during long moves, * this setting determines the minimum update time between checks. A value of 100 works well with * error rolling average when attempting to correct only for skips and not for vibration. */ #define I2CPE_MIN_UPD_TIME_MS 4 // (ms) Minimum time between encoder checks. // Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise. #define I2CPE_ERR_ROLLING_AVERAGE #endif // I2C_POSITION_ENCODERS /** * Analog Joystick(s) */ //#define JOYSTICK #if ENABLED(JOYSTICK) #define JOY_X_PIN 5 // RAMPS: Suggested pin A5 on AUX2 #define JOY_Y_PIN 10 // RAMPS: Suggested pin A10 on AUX2 #define JOY_Z_PIN 12 // RAMPS: Suggested pin A12 on AUX2 #define JOY_EN_PIN 44 // RAMPS: Suggested pin D44 on AUX2 // Use M119 to find reasonable values after connecting your hardware: #define JOY_X_LIMITS { 5600, 8190-100, 8190+100, 10800 } // min, deadzone start, deadzone end, max #define JOY_Y_LIMITS { 5600, 8250-100, 8250+100, 11000 } #define JOY_Z_LIMITS { 4800, 8080-100, 8080+100, 11550 } #endif /** * MAX7219 Debug Matrix * * Add support for a low-cost 8x8 LED Matrix based on the Max7219 chip as a realtime status display. * Requires 3 signal wires. Some useful debug options are included to demonstrate its usage. */ //#define MAX7219_DEBUG #if ENABLED(MAX7219_DEBUG) #define MAX7219_CLK_PIN 64 #define MAX7219_DIN_PIN 57 #define MAX7219_LOAD_PIN 44 //#define MAX7219_GCODE // Add the M7219 G-code to control the LED matrix #define MAX7219_INIT_TEST 2 // Do a test pattern at initialization (Set to 2 for spiral) #define MAX7219_NUMBER_UNITS 1 // Number of Max7219 units in chain. #define MAX7219_ROTATE 0 // Rotate the display clockwise (in multiples of +/- 90°) // connector at: right=0 bottom=-90 top=90 left=180 //#define MAX7219_REVERSE_ORDER // The individual LED matrix units may be in reversed order //#define MAX7219_SIDE_BY_SIDE // Big chip+matrix boards can be chained side-by-side /** * Sample debug features * If you add more debug displays, be careful to avoid conflicts! */ #define MAX7219_DEBUG_PRINTER_ALIVE // Blink corner LED of 8x8 matrix to show that the firmware is functioning #define MAX7219_DEBUG_PLANNER_HEAD 3 // Show the planner queue head position on this and the next LED matrix row #define MAX7219_DEBUG_PLANNER_TAIL 5 // Show the planner queue tail position on this and the next LED matrix row #define MAX7219_DEBUG_PLANNER_QUEUE 0 // Show the current planner queue depth on this and the next LED matrix row // If you experience stuttering, reboots, etc. this option can reveal how // tweaks made to the configuration are affecting the printer in real-time. #endif /** * NanoDLP Sync support * * Add support for Synchronized Z moves when using with NanoDLP. G0/G1 axis moves will output "Z_move_comp" * string to enable synchronization with DLP projector exposure. This change will allow to use * [[WaitForDoneMessage]] instead of populating your gcode with M400 commands */ //#define NANODLP_Z_SYNC #if ENABLED(NANODLP_Z_SYNC) //#define NANODLP_ALL_AXIS // Enables "Z_move_comp" output on any axis move. // Default behavior is limited to Z axis only. #endif /** * WiFi Support (Espressif ESP32 WiFi) */ //#define WIFISUPPORT #if ENABLED(WIFISUPPORT) #define WIFI_SSID "Wifi SSID" #define WIFI_PWD "Wifi Password" //#define WEBSUPPORT // Start a webserver with auto-discovery //#define OTASUPPORT // Support over-the-air firmware updates #endif /** * Prusa Multi-Material Unit v2 * Enable in Configuration.h */ #if ENABLED(PRUSA_MMU2) // Serial port used for communication with MMU2. // For AVR enable the UART port used for the MMU. (e.g., internalSerial) // For 32-bit boards check your HAL for available serial ports. (e.g., Serial2) #define INTERNAL_SERIAL_PORT 2 #define MMU2_SERIAL internalSerial // Use hardware reset for MMU if a pin is defined for it //#define MMU2_RST_PIN 23 // Enable if the MMU2 has 12V stepper motors (MMU2 Firmware 1.0.2 and up) //#define MMU2_MODE_12V // G-code to execute when MMU2 F.I.N.D.A. probe detects filament runout #define MMU2_FILAMENT_RUNOUT_SCRIPT "M600" // Add an LCD menu for MMU2 //#define MMU2_MENUS #if ENABLED(MMU2_MENUS) // Settings for filament load / unload from the LCD menu. // This is for Prusa MK3-style extruders. Customize for your hardware. #define MMU2_FILAMENTCHANGE_EJECT_FEED 80.0 #define MMU2_LOAD_TO_NOZZLE_SEQUENCE \ { 7.2, 562 }, \ { 14.4, 871 }, \ { 36.0, 1393 }, \ { 14.4, 871 }, \ { 50.0, 198 } #define MMU2_RAMMING_SEQUENCE \ { 1.0, 1000 }, \ { 1.0, 1500 }, \ { 2.0, 2000 }, \ { 1.5, 3000 }, \ { 2.5, 4000 }, \ { -15.0, 5000 }, \ { -14.0, 1200 }, \ { -6.0, 600 }, \ { 10.0, 700 }, \ { -10.0, 400 }, \ { -50.0, 2000 } #endif //#define MMU2_DEBUG // Write debug info to serial output #endif // PRUSA_MMU2 /** * Advanced Print Counter settings */ #if ENABLED(PRINTCOUNTER) #define SERVICE_WARNING_BUZZES 3 // Activate up to 3 service interval watchdogs //#define SERVICE_NAME_1 "Service S" //#define SERVICE_INTERVAL_1 100 // print hours //#define SERVICE_NAME_2 "Service L" //#define SERVICE_INTERVAL_2 200 // print hours //#define SERVICE_NAME_3 "Service 3" //#define SERVICE_INTERVAL_3 1 // print hours #endif // @section develop /** * M43 - display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins */ //#define PINS_DEBUGGING // Enable Marlin dev mode which adds some special commands //#define MARLIN_DEV_MODE ```

(Above configs, as a Zip: Marlin-configs-2019-11-05.zip )

blueeagle69 commented 5 years ago

I do believe I have the same issue. I was printing at 240° just fine. The fan came on and my nozzle temp drop so low it triggered thermal projection and stopped the printer. I rolled back to a previous build and dropped the temp to 230° so I could get the print done. I am now back on the build which is around 4 days old, but haven't printed again since. My build in question was downloaded and flashed when the LPC176x updates were added. I will have to test 240° with fan again I think. I've added a sock for good measure.

boelle commented 5 years ago

I've added a sock for good measure.

and the fan is aimed just below the nozzle so that it does not cool the nozzle?

VanessaE commented 5 years ago

@boelle , that's actually central to this bug report -- just about ALL layer fans cool the hotend at least somewhat, either by directly blowing on it, or by air being redirected back onto the hotend by the bed or by features of the printed part. In practice, a hotend is supposed to temporarily drop in temperature due to the fan, then pick back up within seconds.

Without this effect, I would not have seen the PWM/PID failure happen (probably because without the fan, there would be nothing to compensate for besides filament flow and thus drive the heater PWM to 127).

Come to think of it, if you extrude a lot of filament at a constant, fast rate (such as when flushing the hotend when switching from one type of plastic to another), the heater has to compensate for the added load. So, it may be possible to reproduce this PWM issue without involving any fans, though it would waste some filament.

blueeagle69 commented 5 years ago

@boelle Yes my nozzle doesn't pint directly at the nozzle

VanessaE commented 5 years ago

After updating to 534f2d69 and doing PID tuning by hand, I was able to somewhat compensate for this problem, but not entirely, and maybe this is why:

While tuning (again, by hand), one thing I saw was that PWM values would jump up and down wildly while the temperature is trending up or down.

In fact, even while at a steady state once I settled on PID values I was happy with, with the hotend holding at 230°, with the fan at max, and the nozzle positioned a few millimeters above the center of a cold bed, I was seeing the same wild swings in PWM values, i.e. 120...90...127...53...100...86...110...0...90...67...

Yes, all the way from rail to rail, while steady state after several minutes. I don't think this is how it's supposed to behave... I would think it would quickly settle somewhere with less than a range of, say, ±5.

bandoned commented 5 years ago

I have this issue as well. When printing at 215C and the fan turns on at 50% the hotend drops to 200±5C and then increases back to 215C. Once it's up to temp. If I increase it to 230 manually even with the fans on it heats up to 230C with seemingly no issue. It seems that it only drops initially when the fans come on. Using an SKR 1.3 - Stock CR-10 Heater with an e3D v6 Block with a 12V 350W power supply. I tried PID tunning to no avail. Manually adjusting the PID gets it to a usable state where it doesn't trigger the thermal runaway.

boelle commented 4 years ago

@VanessaE i guess the release of 2.0 a few days ago has not changed anything?

boelle commented 4 years ago

and i dont mean 2.0.x but 2.0

VanessaE commented 4 years ago

I have not tried 2.0, but I was able to mitigate it enough by tinkering with my PID settings and reworking my cooling to keep the layer fan's airflow off of the hotend. That doesn't mean it's fixed, I just managed to "hide" it :smile:

boelle commented 4 years ago

well give it a shot when time allows, 2.0.1 should be out some time before weekend is over

boelle commented 4 years ago

so if you are good with programming its also an option to throw in a PR that can fix it

VanessaE commented 4 years ago

Heh, I'm a decent programmer... but not in C-like languages. I'll leave that to the more experienced.

Patag commented 4 years ago

Out of scope, but @boelle , Marlin 2.0.0 has now rolled out, maybe you could stop your issue report killer role. No ?

boelle commented 4 years ago

@Patag maybe, maybe not

VanessaE commented 4 years ago

@boelle yeah, I think it's safe for the "cleaning crew" to head home for the night. There'll be more stuff to deal with soon enough. :wink:

boelle commented 4 years ago

hehe, its my job here so i will pop up from time to time at random hours

and since @Patag does not have any issues open i cant see what his problem is other than trying bad french humor i dont understand :-D

VanessaE commented 4 years ago

This is still a problem on bugfix-2.0.x at commit ccdeb3f2cd291e050f6a5e6f503455e697f893e8 . Freshly cloned, configured, compiled, and flashed in today. My previous attempt to mitigate the issue was unsuccessful.

Today's print was sliced in constant-flow volumetric mode, as are most things I print, and it was ticking along just fine at 235°C, with the fan on at 20% speed. It had been that way for nearly 2½ hours, so it was as close to a nice steady-state condition as it is possible for a print to be. That is, until Marlin decided it didn't want to apply the proper amount of power to the hotend heater.

Like before, if left unchecked, it'll gradually drop in temperature until it reaches the point where it thinks there's a thermal runaway. That happened once today on a very simple object (a large, square box), ruining the print.

It almost happened a second time today, but thankfully I caught it. When I saw that the temperature was low, this issue came to mind, so I simply turned the target up a few degrees (via Pronterface's control, which undoubtedly sends M104 Sxxx). As in my initial report, that got Marlin out of this weird condition, and it started to correct the hotend temperature. Once it had come back up a bit, I simply set the target back to 235° (at no point did I allow the temperature to exceed that). I did not interrupt the print, or do anything that would have logically affected the hotend's heating capacity.

Clearly the hotend can heat up just fine, and the fan is running at such a low setting that it may as well be off as far as the hotend's concerned, and I'm not using the same board as in my initial post (that board died, so now I'm using an older SKR v1.1). So, I am 100% certain my hardware is not at fault, otherwise tweaking the temperature target would not have made it work.

thinkyhead commented 4 years ago

didn't … apply the proper amount of power to the hotend heater.

Things like this which occur spuriously are hard to account for. Reproducibility is the one true hallmark of a logical bug. Leaving all our machines on at 235° for 2 ½ hours with no guarantee of a similar result is not something I want to do. But I have done several prints longer than 2 hours lately in the 210°C range without any thermal oddities occurring. (Broken bed heating wire notwithstanding.)

Since nothing in the G-code presumably altered the temperature during the entire print, the implication is that there is some kind of overflow condition in the PWM heater code. But, there is nothing that "accumulates" here as far as we are aware.

Since you have run into the issue on a few occasions, perhaps you can enable extra logging in your host software to observe the output of M105 along with the heater power values. Then if you hit the issue again you will be able to send along the logs and show where the PID / PWM starts to get wonky and apply too little power. From the logs it's possible the trigger condition will be obvious.

thinkyhead commented 4 years ago

I did not interrupt the print, or do anything that would have logically affected the hotend's heating capacity.

I did spend a day chasing phantom issues for a while before I found that broken bed wire. Sometimes a spurious issue turns out to be a failing MOSFET, or a wire that gets a little loose once the printer is past a certain Z height. So of course, it's almost as tricky to rule out those types of issues. Since you were able to get things moving by raising the temp, it implies something can be reset by changing the target temp (which we're not so sure about). But it also doesn't necessarily rule out a funky MOSFET.

VanessaE commented 4 years ago

Reproducibility is the one true hallmark of a logical bug. Leaving all our machines on at 235° for 2 ½ hours with no guarantee of a similar result is not something I want to do

Agreed on both. However, I detailed a procedure in my opening post that should take more like 5 minutes.

In short: heat up the hotend to 230° or so, then turn on a fan pointed at the heatblock -- something with enough airflow that the heater won't be able to fully compensate. Hold it in that state for a minute or two, then turn the fan off before Marlin has a chance to throw a thermal runaway error. With a little luck, it'll fail to heat back up and THEN throw a thermal runaway.

Since nothing in the G-code presumably altered the temperature during the entire print, the implication is that there is some kind of overflow condition in the PWM heater code.

This was my first thought, since the host reports that the heater is pegged at PWM=127 when it gets into this state.

But it also doesn't necessarily rule out a funky MOSFET

I would consider that, if not for one detail: this happened on two boards (SKR v1.1 and a v1.3).

thinkyhead commented 4 years ago

In short: heat up the hotend to 230° or so, then turn on a fan pointed at the heatblock -- something with enough airflow that the heater won't be able to fully compensate. Hold it in that state for a minute or two…

Should the temperature be made to drop? And by how much?

…then turn the fan off before Marlin has a chance to throw a thermal runaway error. With a little luck, it'll fail to heat back up and THEN throw a thermal runaway.

Ok, so I get a hint of what might be happening. With the "heater watching" behavior, a thermal runaway will be thrown if the temperature fails to rise as expected while the heater is turned on.

Generally speaking, the heater watch is only supposed to be enabled during the initial heatup. Once you reach the target that goes away and the regular thermal protection takes over. However, if the temperature drops below the target temperature by WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1 degrees the heater watch will start again.

So, if you relax the settings for WATCH_TEMP_PERIOD and/or WATCH_TEMP_INCREASE and/or TEMP_HYSTERESIS and it should at least prevent thermal runaway from occurring in cases where the temperature gets stuck hovering at too far below the target.

VanessaE commented 4 years ago

Should the temperature be made to drop? And by how much?

10 degrees would probably be sufficient. It really just depends on how much more power the heater has to spare, which of course depends on the heater type, voltage, and somewhat on the hotend it's in.

So, if you relax the settings for WATCH_TEMP_PERIODand/or WATCH_TEMP_INCREASE and/or TEMP_HYSTERESIS and it should at least prevent thermal runaway from occurring in cases where the temperature gets stuck hovering at too far below the target.

Right, which is what I did when this first became an issue. The question then remains, why is it getting stuck in the first place?

thinkyhead commented 4 years ago

why is it getting stuck in the first place?

In the test case we are blowing the fan onto the heater to drop the temperature to force a drop in temperature. We could also disconnect the heater wire to get a similar effect.

On your setup, presumably some component such as the MOSFET is failing or overheating and becoming highly resistant, or a wire is becoming frayed, and the heater is no longer getting enough current. There is nothing so far implicated in the firmware, because it is not unheard of for components to "reset themselves" when conditions are changed. And we have no way to know that other factors were not involved.

I can see no condition in the PID loop that would cause it to go haywire, and we have not heard other reports of this issue. So unfortunately, without detailed data (applied power, state of the PID loop, etc.) collected on your machine from several minutes before and during a failure, we have no way to see what is causing the heater to simply stop heating. A detailed log might show us that the firmware has turned on the pin or is generating PWM pulses, and yet the temperature is falling. Or, it might show that some value goes out of range and this breaks the PID loop or the PWM pulses.

As always is the case for such things where we cannot reproduce the issue, we depend entirely on the person experiencing the issue to eliminate all possible contributory causes and to collect data that ideally points directly to the culprit and the solution.

We've added logging to other systems like bed leveling to help us with collecting troubleshooting data. All we can do is be very thorough and add a bunch of logging to the PID loop and PWM generator, get that installed on your machines and always-on so next time this occurs we have a complete picture of what is happening.

VanessaE commented 4 years ago

We could also disconnect the heater wire to get a similar effect.

That should work, yeah, though turning on a fan may be easier on some machines.

On your setup, presumably some component such as the MOSFET is failing or [...]

But like I said, this happened on two different boards, and I do not use any kind of external power circuit to drive the heaters, so I'm certain that I can rule out the controllers and their MOSFETs. Don't get me wrong, it's still reasonable to question the hardware, since the hotend, its heater (a common 12v/40W cartridge), and its thermistor have remained unchanged.

I am building a second printer from almost all new parts (it's been kinda gnawing at me to give CoreXY a try), and hopefully in a few days, I'll be moving my hotend to it, but it'll be getting a new heater cartridge (because the new machine will be 24v). In effect, it'll be a brand new machine. In order to keep it functional, the old printer will get my previous hotend, with the common heater cartridge that comes with it.

So, when all is said and done, both machines will have had all suspect hardware replaced, just as a matter of course. With a little luck, I'll still be able to reproduce this issue afterward, on both machines.

There is nothing so far implicated in the firmware, because it is not unheard of for components to "reset themselves" when conditions are changed.

I could see that, but then that wouldn't explain why simply changing the target temperature by M104 would cause it to immediately start heating up, when it's in this "stuck" state. I mean, surely that doesn't do much more than update some "temperature target" variable?

Consider also #11490 (closed). Since that one only came into effect with a target temperature sufficiently near (above or below) 255°, both it and this one just scream "math overflow" to me.

As always is the case for such things where we cannot reproduce the issue, we depend entirely on the person experiencing the issue to eliminate all possible contributory causes and to collect data that ideally points directly to the culprit and the solution.

And I normally would, but I'm way out of my element here. :confused: Though maybe I could reproduce the issue again, and get an oscilloscope trace of the heater output during that time?

All we can do is be very thorough and add a bunch of logging to the PID loop and PWM generator [...]

I think this would be a good idea regardless of the issue, but I'd have to leave this to someone who's more qualified.

ManuelMcLure commented 4 years ago

Is PWM 127 half power or full power? The value is stored as an int16_t - I'd expect it to be from 0-255 and 127 to be half power. If that's so and you were seeing PWM 127 when it was stuck, that points to a code problem and not a hardware issue.

VanessaE commented 4 years ago

I believe that represents full power - or anyway, I have never seen it exceed 127 on any hardware, and I don't have any setting in place (intentionally) to limit it.

ManuelMcLure commented 4 years ago

I wonder if somehow the PWM is not working properly. Does your board have an LED that shows the hot end power? If it seems to be flashing even when PWM says 127 that could be the problem.

VanessaE commented 4 years ago

It has, but the controller's inside an enclosure, so I haven't noticed the LED one way or the other.

ManuelMcLure commented 4 years ago

My reading of the code implies that the PWM value is constrained to PID_MAX (BANG_MAX) which is 255. So I'm not sure why it wouldn't go past 127 unless there's a bug somewhere or I'm misreading the code.

VanessaE commented 4 years ago

I'd dig into it, but not being good with C-like languages, I wouldn't know what I'm looking at. I can barely manage to edit my configs. :smiley:

That aside, I recall something vague about 127 being the limit of the PWM code in general... something related to raw resolution?

thinkyhead commented 4 years ago

Honestly, there is no point in this kind of speculation. We see it again and again in these threads and it only wastes time. The only way we can get anywhere is with detailed data and clues collected from the machines experiencing the issue. And this is the last thing most people want to do.

github-actions[bot] commented 4 years ago

This issue has been automatically locked since there has not been any recent activity after it was closed. Please open a new issue for related bugs.