MarlinFirmware / Marlin

Marlin is an optimized firmware for RepRap 3D printers based on the Arduino platform. Many commercial 3D printers come with Marlin installed. Check with your vendor if you need source code for your specific machine.
https://marlinfw.org
GNU General Public License v3.0
16.11k stars 19.2k forks source link

new Advance Extrusion algorithm (LIN_ADVANCE) extruder motor not running #4549

Closed Macgyver001 closed 7 years ago

Macgyver001 commented 8 years ago
The Marlin version RC7 - 31 Jul 2016
Machine Self build coreXY
Electronics board ramps 1.4 with arduino 2560
Machine components (direct drive e3d lite, with termistors (my stepper drivers are m542T and I run  at 64 micro step also the extruder)
Host software (none
Slicer (if relevant)-
Printing method (Pronterface or Octoprint)

Configuration_and_adv.zip

Problem: When I enable Lin_advance my extruder motor does not turn/extrude. What Have I tried to do.

Turn off core XY, but still no extruding K factor put to 0 no effect Tried to lower the extrusion speed no effect Extruding in reverse is also not working When disable watchdog does not help

When I disable Lin_advance it extrudes well.

thinkyhead commented 8 years ago

Sounds like a possible bug! Between myself and @Sebastianv650 we should be able to figure it out…

Sebastianv650 commented 8 years ago

If the problem is also there if K=0 then it should be something with the extruder ISR. This is the only big change when LIN_ADVANCE is enabled. I had a short look on your config, the values look quite strange to me:

#define DEFAULT_AXIS_STEPS_PER_UNIT   {320,320,800,386}  // default steps per unit for Ultimaker
#define DEFAULT_MAX_FEEDRATE          {500, 500, 2, 50}   // (mm/sec)
#define DEFAULT_MAX_ACCELERATION      {60,60,200,500}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot. was 75

#define DEFAULT_ACCELERATION          60    // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION  300    // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION   80    // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK                500.0    // (mm/sec) was 20 was 700
#define DEFAULT_ZJERK                 0.4     // (mm/sec)
#define DEFAULT_EJERK                50.0

Why do you use so incredible high jerk values combined with ultra-low acceleration values? I can't imagine this can work..! Do you ever printed good things with theese values?

Macgyver001 commented 8 years ago

Hi thanks for the quick response.

The jerk settings are not aligned very carefully so thank you for your comment. I have lowered a lot of values one by one, but without any result, no extruding when Lin_advance is enable, final settings are listed below:

#define DEFAULT_AXIS_STEPS_PER_UNIT   {320,320,800,100}  // default steps per unit for Ultimaker 160*2,160*2,800,((200*64)*1.0/(10.56*3.14159))=386
#define DEFAULT_MAX_FEEDRATE          {200, 200, 2, 10}   // (mm/sec)
#define DEFAULT_MAX_ACCELERATION      {60,60,100,10}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot. was 75 e=500

#define DEFAULT_ACCELERATION          10    // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION  10    // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION   80    // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK               5.0    // (mm/sec) was 20 was 500
#define DEFAULT_ZJERK                 0.4     // (mm/sec)
#define DEFAULT_EJERK                 2.0    // (mm/sec) 5.0 was 2000

Is there something changed in the extruder stepper motor signals when using Lin_advance? I have connected my ramps 1.4 via self made wiring towards my stepper drivers m542T (but as I mentioned I do not change connections Lin_advance disabled or enabled and it works when I disable Lin_advance)

thinkyhead commented 8 years ago

I recommend you keep testing daily with RCBugFix as we keep fixing things by mistake. This will also allow us to insert some debugging code to help track the issue – something we would generally only do with the working branch.

Sebastianv650 commented 8 years ago

No, LIN_ADVANCE isn't changing anything in the way the stepper is electrically driven. The only difference is the timing, when enabled the extruder has its own ISR.

I would start with common configuration values and see what happens. For example, maybe a value can overflow with an acceleration of only 10mm/s². Therefore, I would set all acceleration values to 500 and test again.

If a simple extruder-only move (for example G1 E3 F50) isn't working with enabled advance, I would check the wiring or other values in the basic config. There is no reason I can think of why such a command should fail due to LIN_ADVANCE.

thinkyhead commented 8 years ago

@Sebastianv650 Well, you will want to look through the LIN_ADVANCE code and make sure nothing got broken since it was first integrated. So far it looks okay, but my eye is not likely to be as keen.

ghost commented 8 years ago

Possibly this? 2/4 phase Nema 23 Stepper Motor Driver 24-50VDC 1.5A-4.5A 256 Microstep M542T|M542T|Stepper Motor Drivers http://www.omc-stepperonline.com/24-phase-nema-23-stepper-motor-driver-2450vdc-15a45a-256-microstep-m542t-p-293.html

For reliable response, pulse width should be longer than 1.5μs.

Extruder working fine with A4988s, not with DRV8825, repetier works, marlin not · Issue #975 · MarlinFirmware/Marlin https://github.com/MarlinFirmware/Marlin/issues/975#issuecomment-47515225

From Pololu's site:

With the DRV8825, the high and low STEP pulses must each be at least 1.9 us; they can be as short as 1 us when using the A4988.

ghost commented 8 years ago

@To see the Repetier-Firmware, Additional delay is added in here and there (STEPPER_HIGH_DELAY and DOUBLE_STEP_DELAY) for stepper driver that it needs long pulse.

Macgyver001 commented 8 years ago

Hello all,

Today I checked the enable signal on my stepper driver, that seems to work fine and is not the issue I also tried the acceleration = 500 and jerk 50 but that also did not help. It could be related to pulse width? Is there an option to change that in the code. I will check if I can find anything related to pulse with in the data sheet of the m542 driver?

Sebastianv650 commented 8 years ago

With a jerk of 50, you may end up with such high speed changes that the extruder can't keep up with the pressure adjustment moves. Extruder only moves shouldn't be affected by LIN_ADVANCE, but I will have a look at the latest Marlin code after my holidays in about 2 weeks.

Macgyver001 commented 8 years ago

Ok, but last time I tested with jerk of 2! I checked the timing of the step pulse and its indeed 1.5 us up and down and 5 us after a direction switch, I don't know what the current timing is, and if its shorter than that?

Thanks for checking, I will also go on holiday, so lets catch up after..

timing diagram m542t controller

thinkyhead commented 8 years ago

@esenapaj Do the Marlin settings CONFIG_STEPPERS_TOSHIBA and MAX_STEP_FREQUENCY seem to be equivalent to the repetier delay options?

ghost commented 8 years ago

No, it isn't. It looks like that CONFIG_STEPPERS_TOSHIBA of Marlin suppress the MAX_STEP_FREQUENCY simply, and disable double / quad stepping mode automatically.

In case of STEPPER_HIGH_DELAY and DOUBLE_STEP_DELAY of Repetier-Firmware, those add additional delay to section of stepper. For example, they add additional delay to A, B, C. Maybe those lines of Marlin are A, B, C.

And, Marlin decide threshold value between single and double stepping automatically. In case of Repetier-Firmware, threshold value between single and double stepping is configurable (STEP_DOUBLER_FREQUENCY).

boelle commented 8 years ago

@thinkyhead does this make a bell ring ? :-D

thinkyhead commented 8 years ago

I'm too shy to start messing with the stepper code at this junction.

Macgyver001 commented 7 years ago

Hi all,

I have tried to reduce MAX_STEP_FREQUENCY to 10000, but without any result. Is there a dirty way to add a delay in only the Extruder stepper, for testing purposes? If this is the correct direction. In the older version of marlin from April 2016 I enabled the 128 u stepping, this gives me a resolution of 640 steps/mm and Extruder 772 steps/mm, at 20mm/s the processor is still capable of running this setup.

Roxy-3D commented 7 years ago

Is there a dirty way to add a delay in only the Extruder stepper, for testing purposes? If this is the correct direction.

Can you explain in a little more detail what you are thinking and why this would be beneficial? I need to understand the problem a little better.

But the reason I'm asking for more detail is this: Right now I'm messing with the mesh_buffer_line() routine to make it non-recursive (to lighten the CPU load). On any given Planner request, it would not be difficult to stagger when an axis moves relative to the other axis.

Macgyver001 commented 7 years ago

Hi Roxy,

The problem is that when I enable Lin_advance my extruder stepper does not work. In the documentation of my external stepper controller it is stated that the steps (digital signals) should not be shorter than 1.5 u seconds. Therefore I would like to enlarge the timing of a high / low signal of only the extruder (or all stepper signals if necessary) (nothing else), to investigate if this is the problem. When I disable LIn_advance everything is working correctly. The XYZ axis are working fine in all occasions.

Blue-Marlin commented 7 years ago

4738 is already merged into RCBugFIX.

Try if https://github.com/MarlinFirmware/Marlin/pull/4738/files#diff-20025b9ffe01efeb4272ee752f32170dR712 helps.

thinkyhead commented 7 years ago

@Blue-Marlin Is the overhead of invoking interrupts very large, I wonder? I was thinking that the advance ISR could start the pulse(s) for E, and instead of sitting and waiting, it could instead set up an interrupt to stop the pulse(s) (soon) and exit right away. Perhaps the same approach is possible with the main stepper ISR.

This would allow them both to exit sooner and give time back to the main thread. But if the overhead of interrupts is significant, then this might actually lead to more cycles being used up, or if other interrupts might block the pulse-stopping interrupt, then pulses might not be stopped soon enough.

There's also the notion of not using any timer-based interrupts at all, but instead just always set up the next single-fire interrupt that's needed, and use a persistent shared state so that each of these tasks can be much smaller slices of the whole stepping procedure.

Blue-Marlin commented 7 years ago

I might have seen something like that in ether grbl or RepetierFirmware. On the other hand i had a look into Prusa-Firmware today, where they not even have the interleave

        counter_x += current_block->steps_x;
        if (counter_x > 0) {
          WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
          counter_x -= current_block->step_event_count;
          count_position[X_AXIS]+=count_direction[X_AXIS];   
          WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
        }

But with supporting only 2-3 defined boards they pretty well know what timing to expect. (And they kicked Advance at all.)

not be shorter than 1.5 u seconds. That is ~24 ticks. With only one extruder in the loop this could be a bordercase, especially with the old STEP_E_ONCE(INDEX). (Have not really counted cycles.)

@Macgyver001 asked for a delay - there it is. But in reality i do not believe there is one needed. Let' see if it helps.

thinkyhead commented 7 years ago

had a look into Prusa-Firmware today, where they not even have the interleave

Hmm! I've wondered if possibly some of these stepper drivers are smartly leaving the pulse on for the duration needed, even though it's been turned off very quickly. I suppose we can query that with an oscilloscope.

Meanwhile, apparently Prusa Research has employed fixed-point maths where performance matters. I've been thinking about that a lot also.

Blue-Marlin commented 7 years ago

I still try to find out what they have really done. The forks are pretty far apart from each other. For now i was mostly interested what they have done with the new bed and the inductive sensor. Really interesting.

Blue-Marlin commented 7 years ago

Comments like

//FIXME This routine is called 15x every time a new line is added to the planner,
// therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
// if the CPU is found lacking computational power.

do look more like a plan than like a done.

thinkyhead commented 7 years ago

Searching the interwebs turns up a lot of discussion about pulse widths, decay time, etc. Lately I'm extra-interested in the topic because I'm not sure I'm a fan of DRV8825 for the current application. The SCARA machine I'm writing code for is currently set up to use 100:1 harmonic drives on the A/B axes, which means if using 32x micro-stepping, we need 1778 pulses per degree to move the steppers (which results in ~7mm per degree in the most extreme case, but only half of that per linkage).

Or in other words, total overkill in terms of movement accuracy. Even at 16x microstepping it amounts to 889 pulses per degree. When we start having this many pulses the bugs and errors start to get a bit weird. Imagine also, this is all on a Mega2560 platform, so again, really pushing the limits unnecessarily. I'm inclined to drop down even as low as 8x microstepping, but wondering how much extra sound that will produce.

In the end, I may have no choice but to either go with far lower microstepping or insist that we switch to 25:1 harmonic drives, just so the Mega can keep up.

Macgyver001 commented 7 years ago

Hey guys,

@Macgyver001 asked for a delay - there it is. But in reality i do not believe there is one needed. Let' see if it helps.

I am sorry, but I am quite new in C, so Blue Marlin I don't know what I have to change where? I downloaded the latest RC bugfix but I don't know where to find STEP_E_ONCE(INDEX). Unfortunately I don't have a oscilloscope else I would have checked it. Advance and Lin_advance are both not extruding when one off them is enabled. including the use of CONFIG_STEPPERS_TOSHIBA to limit the frequency.

Thinkyhead, I have changed my drivers for m542T because they run smoother and I had some resonance problems. My CoreXY is quite stiff (ridgid) and I have better looking prints with higher mirco-stepping. If you like I can show the difference between lets say 16 and 128 (mirco stepping), I need some time for that? My latest Treefrog is really nice except some small artifacts I hope to resolve with Lin_advance, and the Lin_advance concept is way smarter than the normal implementation, that's why I like to enable Lin_advance.

thinkyhead commented 7 years ago

@Macgyver001 Did you test with MINIMUM_STEPPER_PULSE set around 9 or 10? With only a single extruder, the advance ISR makes extremely short pulses.

Macgyver001 commented 7 years ago

Thanks thinkyhead, I now tested this option Minimum stepper pulse. Started with 10 it worked, but marlin did not response well after. Went down to 1 and the extruder is reacting, I have to see if my marlin configurables are correct and see if everything is working well. Something went NOK with my G28 homing, Z was not responding correctly. This MINIMUM_STEPPER_PULSE accepts only integers? For now this Minimum_stepper_Pulse is doing the Job for me, I can start testing with LIN_ADVANCE.

Nice. I will Keep you updated.

thinkyhead commented 7 years ago

This MINIMUM_STEPPER_PULSE accepts only integers?

It does. If you want to reduce the time it may accrue, you can strip off individual 1/16ths of a µs by increasing the value of CYCLES_EATEN_BY_CODE and/or CYCLES_EATEN_BY_E which are "hidden" in stepper.cpp.

thinkyhead commented 7 years ago

@Sebastianv650 It looks like we need to add a small delay into the advance ISR to get a long enough pulse. If a stepper pulse needs to be 9 or 10µs long, then it should do something like this…

void Stepper::advance_isr() {

  old_OCR0A += eISR_Rate;
  OCR0A = old_OCR0A;

  #define SET_E_STEP_DIR(INDEX) \
    E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)

  #define START_E_PULSE(INDEX) \
    if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)

  #define STOP_E_PULSE(INDEX) \
    if (e_steps[INDEX]) { \
      e_steps[INDEX] <= 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
      E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
    }

  SET_E_STEP_DIR(0);
  #if E_STEPPERS > 1
    SET_E_STEP_DIR(1);
    #if E_STEPPERS > 2
      SET_E_STEP_DIR(2);
      #if E_STEPPERS > 3
        SET_E_STEP_DIR(3);
      #endif
    #endif
  #endif

  // Step all E steppers that have steps
  for (uint8_t i = 0; i < step_loops; i++) {

    START_E_PULSE(0);
    #if E_STEPPERS > 1
      START_E_PULSE(1);
      #if E_STEPPERS > 2
        START_E_PULSE(2);
        #if E_STEPPERS > 3
          START_E_PULSE(3);
        #endif
      #endif
    #endif

    // For a minimum pulse time wait before stopping pulses
    #if MINIMUM_STEPPER_PULSE > 0
      #define CYCLES_EATEN_BY_E_CODE 10
      #define ADDED_DELAY (MINIMUM_STEPPER_PULSE) * (F_CPU / 1000000UL) - 20 * (E_STEPPERS - 1) - CYCLES_EATEN_BY_E_CODE
      #if ADDED_DELAY > 0
        static uint32_t pulse_start;
        pulse_start = TCNT0;
        while ((uint32_t)(TCNT0 - pulse_start) < (uint32_t)(ADDED_DELAY)) { /* nada */ }
      #endif
    #endif

    STOP_E_PULSE(0);
    #if E_STEPPERS > 1
      STOP_E_PULSE(1);
      #if E_STEPPERS > 2
        STOP_E_PULSE(2);
        #if E_STEPPERS > 3
          STOP_E_PULSE(3);
        #endif
      #endif
    #endif
  }

}
ghost commented 7 years ago

I obtained oscilloscope in this month and now I'm observing stepping pulses, I found direction signal of LIN_ADVANCE (and ADVANCE)is broken. Yellow: direction signal Cyan: stepping pulse Magenta: enable signal

#define XYZ_FULL_STEPS_PER_ROTATION 400 // original is 200
#define E_FULL_STEPS_PER_ROTATION 1024 // 5.18 : 1 geared // original is 200
#define XYZ_MICROSTEPS 8
#define E_MICROSTEPS 8
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
#define E_GEAR_EFFECTIVE_DIAMETER 10.94 // Bondtech QR: Effective diameter : 10.94mm?
#define XYZ_STEPS (double(XYZ_FULL_STEPS_PER_ROTATION) * XYZ_MICROSTEPS / (XYZ_BELT_PITCH * XYZ_PULLEY_TEETH))
#define E_STEPS (double(E_FULL_STEPS_PER_ROTATION) * E_MICROSTEPS / (E_GEAR_EFFECTIVE_DIAMETER * M_PI))

LIN_ADVANCE

g1 e10 f10 g1 e100 f1200 (this was taken in microstep = 16, sorry)
newfile2 newfile1

This problem had been also occurred in my 32bit branch, but when I change the Stepper::old_OCR0A and Stepper::eISR_Rate from unsigned char to uint32_t and down a threshold of double-stepping, problem was solved roughly. But in case of official 8bit Marlin, even if I change the old_OCR0A and eISR_Rate to unsigned int or unsigned long, problem isn't solved.

and, I awaken stepper pulse of ADVANCE and LIN_ADVANCE are inverted for some reason.

g1 e100 f1200

normal ADVANCE
newfile4 newfile3
Configuration.h ``` cpp /** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Configuration.h * * Basic settings such as: * * - Type of electronics * - Type of temperature sensor * - Printer geometry * - Endstop configuration * - LCD controller * - Extra features * * Advanced settings can be found in Configuration_adv.h * */ #ifndef CONFIGURATION_H #define CONFIGURATION_H /** * * *********************************** * ** ATTENTION TO ALL DEVELOPERS ** * *********************************** * * You must increment this version number for every significant change such as, * but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option. * * Note: Update also Version.h ! */ #define CONFIGURATION_H_VERSION 010100 //=========================================================================== //============================= Getting Started ============================= //=========================================================================== /** * Here are some standard links for getting your machine calibrated: * * http://reprap.org/wiki/Calibration * http://youtu.be/wAL9d7FgInk * http://calculator.josefprusa.cz * http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide * http://www.thingiverse.com/thing:5573 * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap * http://www.thingiverse.com/thing:298812 */ //=========================================================================== //============================= DELTA Printer =============================== //=========================================================================== // For a Delta printer replace the configuration files with the files in the // example_configurations/delta directory. // //=========================================================================== //============================= SCARA Printer =============================== //=========================================================================== // For a Scara printer replace the configuration files with the files in the // example_configurations/SCARA directory. // // @section info // User-specified version info of this build to display in [Pronterface, etc] terminal window during // startup. Implementation of an idea by Prof Braino to inform user that any changes made to this // build by the user have been successfully uploaded into firmware. #define STRING_CONFIG_H_AUTHOR "(Micromake)" // Who made the changes. #define SHOW_BOOTSCREEN #define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1 #define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2 // // *** VENDORS PLEASE READ ***************************************************** // // Marlin now allow you to have a vendor boot image to be displayed on machine // start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your // custom boot image and them the default Marlin boot image is shown. // // We suggest for you to take advantage of this new feature and keep the Marlin // boot image unmodified. For an example have a look at the bq Hephestos 2 // example configuration folder. // //#define SHOW_CUSTOM_BOOTSCREEN // @section machine /** * Select which serial port on the board will be used for communication with the host. * This allows the connection of wireless adapters (for instance) to non-default port pins. * Serial port 0 is always used by the Arduino bootloader regardless of this setting. * * :[0,1,2,3,4,5,6,7] */ #define SERIAL_PORT 0 #define BAUDRATE 250000 /** * This setting determines the communication speed of the printer. * * 250000 works in most cases, but you might try a lower speed if * you commonly experience drop-outs during host printing. * * :[2400,9600,19200,38400,57600,115200,250000] */ // Enable the Bluetooth serial interface on AT90USB devices //#define BLUETOOTH // The following define selects which electronics board you have. // Please choose the name from boards.h that matches your setup #ifndef MOTHERBOARD #define MOTHERBOARD BOARD_RAMPS_14_EFB #endif // Optional custom name for your RepStrap or other custom machine // Displayed in the LCD "Ready" message #define CUSTOM_MACHINE_NAME "Micromake" // Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines) // You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4) //#define MACHINE_UUID "00000000-0000-0000-0000-000000000000" // This defines the number of extruders // :[1,2,3,4] #define EXTRUDERS 1 // For Cyclops or any "multi-extruder" that shares a single nozzle. //#define SINGLENOZZLE // A dual extruder that uses a single stepper motor // Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z //#define SWITCHING_EXTRUDER #if ENABLED(SWITCHING_EXTRUDER) #define SWITCHING_EXTRUDER_SERVO_NR 0 #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1 //#define HOTEND_OFFSET_Z {0.0, 0.0} #endif /** * "Mixing Extruder" * - Adds a new code, M165, to set the current mix factors. * - Extends the stepping routines to move multiple steppers in proportion to the mix. * - Optional support for Repetier Host M163, M164, and virtual extruder. * - This implementation supports only a single extruder. * - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation */ //#define MIXING_EXTRUDER #if ENABLED(MIXING_EXTRUDER) #define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder #define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164 //#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands #endif // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder). // For the other hotends it is their distance from the extruder 0 hotend. //#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis //#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis /** * Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN * * 0 = No Power Switch * 1 = ATX * 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC) * * :{0:'No power switch',1:'ATX',2:'X-Box 360'} */ #define POWER_SUPPLY 2 #if POWER_SUPPLY > 0 // Enable this option to leave the PSU off at startup. // Power to steppers and heaters will need to be turned on with M80. //#define PS_DEFAULT_OFF #endif // @section temperature //=========================================================================== //============================= Thermal Settings ============================ //=========================================================================== // //--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table // //// Temperature sensor settings: // -3 is thermocouple with MAX31855 (only for sensor 0) // -2 is thermocouple with MAX6675 (only for sensor 0) // -1 is thermocouple with AD595 // 0 is not used // 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup) // 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup) // 3 is Mendel-parts thermistor (4.7k pullup) // 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !! // 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup) // 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup) // 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup) // 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup) // 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) // 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup) // 10 is 100k RS thermistor 198-961 (4.7k pullup) // 11 is 100k beta 3950 1% thermistor (4.7k pullup) // 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed) // 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE" // 20 is the PT100 circuit found in the Ultimainboard V2.x // 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950 // 66 is 4.7M High Temperature thermistor from Dyze Design // 70 is the 100K thermistor found in the bq Hephestos 2 // // 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k // (but gives greater accuracy and more stable PID) // 51 is 100k thermistor - EPCOS (1k pullup) // 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup) // 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup) // // 1047 is Pt1000 with 4k7 pullup // 1010 is Pt1000 with 1k pullup (non standard) // 147 is Pt100 with 4k7 pullup // 110 is Pt100 with 1k pullup (non standard) // 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below. // Use it for Testing or Development purposes. NEVER for production machine. //#define DUMMY_THERMISTOR_998_VALUE 25 //#define DUMMY_THERMISTOR_999_VALUE 100 // :{ '0': "Not used",'1':"100k / 4.7k - EPCOS",'2':"200k / 4.7k - ATC Semitec 204GT-2",'3':"Mendel-parts / 4.7k",'4':"10k !! do not use for a hotend. Bad resolution at high temp. !!",'5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'6':"100k / 4.7k EPCOS - Not as accurate as Table 1",'7':"100k / 4.7k Honeywell 135-104LAG-J01",'8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT",'9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1",'10':"100k / 4.7k RS 198-961",'11':"100k / 4.7k beta 3950 1%",'12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)",'13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'",'20':"PT100 (Ultimainboard V2.x)",'51':"100k / 1k - EPCOS",'52':"200k / 1k - ATC Semitec 204GT-2",'55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950",'66':"Dyze Design 4.7M High Temperature thermistor",'70':"the 100K thermistor found in the bq Hephestos 2",'71':"100k / 4.7k Honeywell 135-104LAF-J01",'147':"Pt100 / 4.7k",'1047':"Pt1000 / 4.7k",'110':"Pt100 / 1k (non-standard)",'1010':"Pt1000 / 1k (non standard)",'-3':"Thermocouple + MAX31855 (only for sensor 0)",'-2':"Thermocouple + MAX6675 (only for sensor 0)",'-1':"Thermocouple + AD595",'998':"Dummy 1",'999':"Dummy 2" } #define TEMP_SENSOR_0 5 #define TEMP_SENSOR_1 0 #define TEMP_SENSOR_2 0 #define TEMP_SENSOR_3 0 #define TEMP_SENSOR_BED 5 // This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted. //#define TEMP_SENSOR_1_AS_REDUNDANT #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10 // Extruder temperature must be close to target for this long before M109 returns success #define TEMP_RESIDENCY_TIME 10 // (seconds) #define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one #define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early. // Bed temperature must be close to target for this long before M190 returns success #define TEMP_BED_RESIDENCY_TIME 10 // (seconds) #define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one #define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early. // The minimal temperature defines the temperature below which the heater will not be enabled It is used // to check that the wiring to the thermistor is not broken. // Otherwise this would lead to the heater being powered on all the time. #define HEATER_0_MINTEMP 5 #define HEATER_1_MINTEMP 5 #define HEATER_2_MINTEMP 5 #define HEATER_3_MINTEMP 5 #define BED_MINTEMP 5 // When temperature exceeds max temp, your heater will be switched off. // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure! // You should use MINTEMP for thermistor short/failure protection. #define HEATER_0_MAXTEMP 275 #define HEATER_1_MAXTEMP 275 #define HEATER_2_MAXTEMP 275 #define HEATER_3_MAXTEMP 275 #define BED_MAXTEMP 160 //=========================================================================== //============================= PID Settings ================================ //=========================================================================== // PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning // Comment the following line to disable PID and enable bang-bang. #define PIDTEMP #define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current #define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current #if ENABLED(PIDTEMP) #define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result. //#define PID_DEBUG // Sends debug data to the serial port. //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders) // Set/get with gcode: M301 E[extruder number, 0-2] #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define K1 0.95 //smoothing factor within the PID // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // Ultimaker //#define DEFAULT_Kp 22.2 //#define DEFAULT_Ki 1.08 //#define DEFAULT_Kd 114 // MakerGear //#define DEFAULT_Kp 7.0 //#define DEFAULT_Ki 0.1 //#define DEFAULT_Kd 12 // Mendel Parts V9 on 12V //#define DEFAULT_Kp 63.0 //#define DEFAULT_Ki 2.25 //#define DEFAULT_Kd 440 // E3D V6 //#define DEFAULT_Kp 19.86 //#define DEFAULT_Ki 1.83 //#define DEFAULT_Kd 54.02 // MINE #define DEFAULT_Kp 46.03 #define DEFAULT_Ki 6.24 #define DEFAULT_Kd 84.84 #endif // PIDTEMP //=========================================================================== //============================= PID > Bed Temperature Control =============== //=========================================================================== // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz, // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // If your configuration is significantly different than this and you don't understand the issues involved, you probably // shouldn't use bed PID until someone else verifies your hardware works. // If this is enabled, find your own PID constants below. //#define PIDTEMPBED //#define BED_LIMIT_SWITCHING // This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option. // all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis) // setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did, // so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED) #define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current #if ENABLED(PIDTEMPBED) //#define PID_BED_DEBUG // Sends debug data to the serial port. #define PID_BED_INTEGRAL_DRIVE_MAX MAX_BED_POWER //limit for the integral term //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10) #define DEFAULT_bedKp 10.00 #define DEFAULT_bedKi .023 #define DEFAULT_bedKd 305.4 //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) //from pidautotune //#define DEFAULT_bedKp 97.1 //#define DEFAULT_bedKi 1.41 //#define DEFAULT_bedKd 1675.16 // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles. #endif // PIDTEMPBED // @section extruder // This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP. // It also enables the M302 command to set the minimum extrusion temperature // or to allow moving the extruder regardless of the hotend temperature. // *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! *** //#define PREVENT_COLD_EXTRUSION #define EXTRUDE_MINTEMP 175 // This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH. // Note that for Bowden Extruders a too-small value here may prevent loading. #define PREVENT_LENGTHY_EXTRUDE #define EXTRUDE_MAXLENGTH 200 //=========================================================================== //======================== Thermal Runaway Protection ======================= //=========================================================================== /** * Thermal Protection protects your printer from damage and fire if a * thermistor falls out or temperature sensors fail in any way. * * The issue: If a thermistor falls out or a temperature sensor fails, * Marlin can no longer sense the actual temperature. Since a disconnected * thermistor reads as a low temperature, the firmware will keep the heater on. * * If you get "Thermal Runaway" or "Heating failed" errors the * details can be tuned in Configuration_adv.h */ #define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders #define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed //=========================================================================== //============================= Mechanical Settings ========================= //=========================================================================== // @section machine // Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics //#define COREXY //#define COREXZ //#define COREYZ //=========================================================================== //============================== Delta Settings ============================= //=========================================================================== // Enable DELTA kinematics and most of the default configuration for Deltas #define DELTA #if ENABLED(DELTA) // Make delta curves from many straight lines (linear interpolation). // This is a trade-off between visible corners (not enough segments) // and processor overload (too many expensive sqrt calls). #define DELTA_SEGMENTS_PER_SECOND 80 // original is 160(Marlin ver.) or 180(Repetier-Firmware ver.) // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them // Center-to-center distance of the holes in the diagonal push rods. #define DELTA_DIAGONAL_ROD 217.3 // mm // Horizontal offset from middle of printer to smooth rod center. #define DELTA_SMOOTH_ROD_OFFSET 141.0 // mm // original is 151.0 // Horizontal offset of the universal joints on the end effector. #define DELTA_EFFECTOR_OFFSET 24.0 // mm // Horizontal offset of the universal joints on the carriages. #define DELTA_CARRIAGE_OFFSET 22.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 75.0 // original is 100.0 // Delta calibration menu // uncomment to add three points calibration menu option. // See http://minow.blogspot.com/index.html#4918805519571907051 // If needed, adjust the X, Y, Z calibration coordinates // in ultralcd.cpp@lcd_delta_calibrate_menu() #define DELTA_CALIBRATION_MENU #endif // Enable this option for Toshiba steppers //#define CONFIG_STEPPERS_TOSHIBA //=========================================================================== //============================== Endstop Settings =========================== //=========================================================================== // @section homing // Specify here all the endstop connectors that are connected to any endstop or probe. // Almost all printers will be using one per axis. Probes will use one or more of the // extra connectors. Leave undefined any used for non-endstop and non-probe purposes. //#define USE_XMIN_PLUG //#define USE_YMIN_PLUG #define USE_ZMIN_PLUG // a Z probe #define USE_XMAX_PLUG #define USE_YMAX_PLUG #define USE_ZMAX_PLUG // coarse Endstop Settings #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors #if DISABLED(ENDSTOPPULLUPS) // fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined //#define ENDSTOPPULLUP_XMAX //#define ENDSTOPPULLUP_YMAX //#define ENDSTOPPULLUP_ZMAX //#define ENDSTOPPULLUP_XMIN //#define ENDSTOPPULLUP_YMIN //#define ENDSTOPPULLUP_ZMIN //#define ENDSTOPPULLUP_ZMIN_PROBE #endif // Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup). #define X_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. // original is false #define Y_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. // original is false #define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. // original is false #define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Z_MIN_PROBE_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. //============================================================================= //============================== Movement Settings ============================ //============================================================================= // @section motion // delta speeds must be the same on xyz /** * Default Settings * * These settings can be reset by M502 * * Note that if EEPROM is enabled, saved values will override these. */ // // MK8 DRIVE GEAR: // Dimension: 11mm (height) x 9mm (diameter) // Diameter (measured with caliper): 6.8mm // Bore size: ø5mm // // Real-life measured data (tested with 1.7mm filament): // Effective diameter: 6.7mm // Effective circumference : 21mm // Steps per mm: 152 approx. - tested with direct drive, 200 steps/rev and 1/16th. microstepping: 200 * 16 / 21 ~= 152 // // Hobb-Goblin - 5mm ID Drive Gear: // similar in effective radius and usage to a Mk8 Drive Gear // // Real-life measured data (tested with 1.7mm filament): // Effective diameter: 7.0mm // Effective circumference : 22mm // Steps per mm: 291 approx. - tested with direct drive, 200 steps/rev and 32th. microstepping: 200 * 32 / 22 ~= 291 //295? // // Bondtech QR // Steps / millimeter Use 476.55 steps / millimeter (1.75mm) and 492.45 steps/mm (3.0mm) as a start point when using 16 bit micro stepping, // fine tune the steps by cutting off the filament flush with the extruder, then extrude 100 mm and measure the extruded length. // Example: If you measure 97 mm then change the steps/mm setting in your firmware to 476.55 * (100/97) = 491,28 steps/mm. // In order to set the steps/mm value in your printer you can use the following method. // Connect to your printer with your favorite program that lets you send G-codes to your printer. // Send the following commands to your printer controller: M92 E492.45 (to set e-step to 492.45 steps/mm) M500 (to store new value in Eprom of the controller) #define XYZ_FULL_STEPS_PER_ROTATION 400 // original is 200 #define E_FULL_STEPS_PER_ROTATION 1024 // 5.18 : 1 geared // original is 200 #define XYZ_MICROSTEPS 8 #define E_MICROSTEPS 8 #define XYZ_BELT_PITCH 2 #define XYZ_PULLEY_TEETH 16 #define E_GEAR_EFFECTIVE_DIAMETER 10.94 // Bondtech QR: Effective diameter : 10.94mm? #define XYZ_STEPS (double(XYZ_FULL_STEPS_PER_ROTATION) * XYZ_MICROSTEPS / (XYZ_BELT_PITCH * XYZ_PULLEY_TEETH)) #define E_STEPS (double(E_FULL_STEPS_PER_ROTATION) * E_MICROSTEPS / (E_GEAR_EFFECTIVE_DIAMETER * M_PI)) /** * Default Axis Steps Per Unit (steps/mm) * Override with M92 */ #define DEFAULT_AXIS_STEPS_PER_UNIT { XYZ_STEPS, XYZ_STEPS, XYZ_STEPS, E_STEPS } /** * Default Max Feed Rate (mm/s) * Override with M203 */ #define DEFAULT_MAX_FEEDRATE { 300, 300, 300, 300 } /** * Default Max Acceleration (change/s) change = mm/s * Override with M201 * * Maximum start speed for accelerated moves: { X, Y, Z, E } */ #define DEFAULT_MAX_ACCELERATION { 3000, 3000, 3000, 9000 } /** * Default Acceleration (change/s) change = mm/s * Override with M204 * * M204 P Acceleration * M204 R Retract Acceleration * M204 T Travel Acceleration */ #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves #define DEFAULT_RETRACT_ACCELERATION 9000 // E acceleration for retracts #define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves /** * Defult Jerk (mm/s) * * "Jerk" specifies the minimum speed change that requires acceleration. * When changing speed and direction, if the difference is less than the * value set here, it may happen instantaneously. */ #define DEFAULT_XYJERK 10.0 #define DEFAULT_ZJERK 10.0 #define DEFAULT_EJERK 5.0 //=========================================================================== //============================= Z Probe Options ============================= //=========================================================================== // @section probes // // Probe Type // Probes are sensors/switches that are activated / deactivated before/after use. // // Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc. // You must activate one of these to use AUTO_BED_LEVELING_FEATURE below. // // Use M851 to set the Z probe vertical offset from the nozzle. Store with M500. // // A Fix-Mounted Probe either doesn't deploy or needs manual deployment. // For example an inductive probe, or a setup that uses the nozzle to probe. // An inductive probe must be deactivated to go below // its trigger-point if hardware endstops are active. #define FIX_MOUNTED_PROBE // The BLTouch probe emulates a servo probe. //#define BLTOUCH // Z Servo Probe, such as an endstop switch on a rotating arm. //#define Z_ENDSTOP_SERVO_NR 0 //#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles // Enable if you have a Z probe mounted on a sled like those designed by Charles Bell. //#define Z_PROBE_SLED //#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like. // Z Probe to nozzle (X,Y) offset, relative to (0, 0). // X and Y offsets must be integers. // // In the following example the X and Y offsets are both positive: // #define X_PROBE_OFFSET_FROM_EXTRUDER 10 // #define Y_PROBE_OFFSET_FROM_EXTRUDER 10 // // +-- BACK ---+ // | | // L | (+) P | R <-- probe (20,20) // E | | I // F | (-) N (+) | G <-- nozzle (10,10) // T | | H // | (-) | T // | | // O-- FRONT --+ // (0,0) #define X_PROBE_OFFSET_FROM_EXTRUDER 0 // X offset: -left +right [of the nozzle] #define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle] #define Z_PROBE_OFFSET_FROM_EXTRUDER 0.75 // Z offset: -below +above [the nozzle] // X and Y axis travel speed (mm/m) between probes #define XY_PROBE_SPEED 3000 // Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH) #define Z_PROBE_SPEED_FAST 1000 // Speed for the "accurate" probe of each point #define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2) // Use double touch for probing //#define PROBE_DOUBLE_TOUCH // Allen key retractable Z Probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe // Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN. //#define Z_PROBE_ALLEN_KEY #if ENABLED(Z_PROBE_ALLEN_KEY) // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29, // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X 30.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y DELTA_PRINTABLE_RADIUS #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z 100.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_TRAVEL_SPEED #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y DELTA_PRINTABLE_RADIUS #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z 100.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_TRAVEL_SPEED)/10 #define Z_PROBE_ALLEN_KEY_STOW_1_X -64.0 // Move the probe into position #define Z_PROBE_ALLEN_KEY_STOW_1_Y 56.0 #define Z_PROBE_ALLEN_KEY_STOW_1_Z 23.0 #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_TRAVEL_SPEED #define Z_PROBE_ALLEN_KEY_STOW_2_X -64.0 // Push it down #define Z_PROBE_ALLEN_KEY_STOW_2_Y 56.0 #define Z_PROBE_ALLEN_KEY_STOW_2_Z 3.0 #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_TRAVEL_SPEED)/10 #define Z_PROBE_ALLEN_KEY_STOW_3_X -64.0 // Move it up to clear #define Z_PROBE_ALLEN_KEY_STOW_3_Y 56.0 #define Z_PROBE_ALLEN_KEY_STOW_3_Z 50.0 #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_TRAVEL_SPEED #endif // Z_PROBE_ALLEN_KEY // Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine. // With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing. // // *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! *** // // To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING. // Example: To park the head outside the bed area when homing with G28. // // To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN. // // For a servo-based Z probe, you must set up servo support below, including // NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES. // // - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin. // - Use 5V for powered (usu. inductive) sensors. // - Otherwise connect: // - normally-closed switches to GND and D32. // - normally-open switches to 5V and D32. // // Normally-closed switches are advised and are the default. // // The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.) // Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the // default pin for all RAMPS-based boards. Some other boards map differently. // To set or change the pin for your board, edit the appropriate pins_XXXXX.h file. // // WARNING: // Setting the wrong pin may have unexpected and potentially disastrous consequences. // Use with caution and do your homework. // //#define Z_MIN_PROBE_ENDSTOP // Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE. // The Z_MIN_PIN will then be used for both Z-homing and probing. #define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN // To use a probe you must enable one of the two options above! // This option disables the use of the Z_MIN_PROBE_PIN // To enable the Z probe pin but disable its use, uncomment the line below. This only affects a // Z probe switch if you have a separate Z min endstop also and have activated Z_MIN_PROBE_ENDSTOP above. // If you're using the Z MIN endstop connector for your Z probe, this has no effect. //#define DISABLE_Z_MIN_PROBE_ENDSTOP // Enable Z Probe Repeatability test to see how accurate your probe is #define Z_MIN_PROBE_REPEATABILITY_TEST // // Minimum heights for the probe to deploy/stow and travel. // These values specify the distance from the NOZZLE to the BED. // #define Z_PROBE_DEPLOY_HEIGHT 5 // Z position for the probe to deploy/stow #define Z_PROBE_TRAVEL_HEIGHT 2 // Z position for travel between points // // For M851 give a range for adjusting the Z probe offset // #define Z_PROBE_OFFSET_RANGE_MIN -20 #define Z_PROBE_OFFSET_RANGE_MAX 20 // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // :{0:'Low',1:'High'} #define X_ENABLE_ON 1 #define Y_ENABLE_ON 1 #define Z_ENABLE_ON 1 #define E_ENABLE_ON 1 // For all extruders // Disables axis stepper immediately when it's not being used. // WARNING: When motors turn off there is a chance of losing position accuracy! #define DISABLE_X false #define DISABLE_Y false #define DISABLE_Z false // Warn on display about possibly reduced accuracy //#define DISABLE_REDUCED_ACCURACY_WARNING // @section extruder #define DISABLE_E false // For all extruders #define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled // @section machine // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. #define INVERT_X_DIR false // DELTA does not invert // original is true #define INVERT_Y_DIR false // original is true #define INVERT_Z_DIR false // original is true // @section extruder // For direct drive extruder v9 set to true, for geared extruder set to false. #define INVERT_E0_DIR false #define INVERT_E1_DIR false #define INVERT_E2_DIR false #define INVERT_E3_DIR false // @section homing //#define Z_HOMING_HEIGHT 0 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ... // Be sure you have this distance over your Z_MAX_POS in case. // ENDSTOP SETTINGS: // Sets direction of endstops when homing; 1=MAX, -1=MIN // :[-1,1] #define X_HOME_DIR 1 // deltas always home to max #define Y_HOME_DIR 1 #define Z_HOME_DIR 1 #define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS. #define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below. // @section machine // Travel limits after homing (units are in mm) #define X_MIN_POS -(DELTA_PRINTABLE_RADIUS) #define Y_MIN_POS -(DELTA_PRINTABLE_RADIUS) #define Z_MIN_POS 0 #define X_MAX_POS DELTA_PRINTABLE_RADIUS #define Y_MAX_POS DELTA_PRINTABLE_RADIUS #define Z_MAX_POS MANUAL_Z_HOME_POS //=========================================================================== //========================= Filament Runout Sensor ========================== //=========================================================================== //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament // RAMPS-based boards use SERVO3_PIN. For other boards you may need to define FIL_RUNOUT_PIN. // It is assumed that when logic high = filament available // when logic low = filament ran out #if ENABLED(FILAMENT_RUNOUT_SENSOR) const bool FIL_RUNOUT_INVERTING = false; // set to true to invert the logic of the sensor. #define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. #define FILAMENT_RUNOUT_SCRIPT "M600" #endif //=========================================================================== //============================ Mesh Bed Leveling ============================ //=========================================================================== //#define MESH_BED_LEVELING // Enable mesh bed leveling. #if ENABLED(MESH_BED_LEVELING) #define MESH_INSET 10 // Mesh inset margin on print area #define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited. #define MESH_NUM_Y_POINTS 3 #define MESH_HOME_SEARCH_Z 4 // Z after Home, bed somewhere below but above 0.0. //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0] //#define MANUAL_BED_LEVELING // Add display menu option for bed leveling. #if ENABLED(MANUAL_BED_LEVELING) #define MBL_Z_STEP 0.025 // Step size while manually probing Z axis. #endif // MANUAL_BED_LEVELING #endif // MESH_BED_LEVELING //=========================================================================== //============================ Bed Auto Leveling ============================ //=========================================================================== // @section bedlevel #define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line) // Enable this feature to get detailed logging of G28, G29, M48, etc. // Logging is off by default. Enable this logging feature with 'M111 S32'. // NOTE: Requires a huge amount of PROGMEM. //#define DEBUG_LEVELING_FEATURE #if ENABLED(AUTO_BED_LEVELING_FEATURE) // There are 2 different ways to specify probing locations: // // - "grid" mode // Probe several points in a rectangular grid. // You specify the rectangle and the density of sample points. // This mode is preferred because there are more measurements. // // - "3-point" mode // Probe 3 arbitrary points on the bed (that aren't collinear) // You specify the XY coordinates of all 3 points. // Enable this to sample the bed in a grid (least squares solution). // Note: this feature generates 10KB extra code size. #define AUTO_BED_LEVELING_GRID // Deltas only support grid mode. #if ENABLED(AUTO_BED_LEVELING_GRID) // set the rectangle in which to probe #define DELTA_PROBEABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 25) // original is (DELTA_PRINTABLE_RADIUS - 50) #define LEFT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS) #define RIGHT_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS #define FRONT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS) #define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS #define MIN_PROBE_EDGE 10 // The Z probe minimum square sides can be no smaller than this. // Non-linear bed leveling will be used. // Compensate by interpolating between the nearest four Z probe values for each point. // Useful for deltas where the print surface may appear like a bowl or dome shape. // Works best with AUTO_BED_LEVELING_GRID_POINTS 5 or higher. #define AUTO_BED_LEVELING_GRID_POINTS 7 // original is ACCURATE_BED_LEVELING_POINTS 3 #else // !AUTO_BED_LEVELING_GRID // Arbitrary points to probe. // A simple cross-product is used to estimate the plane of the bed. #define ABL_PROBE_PT_1_X 15 #define ABL_PROBE_PT_1_Y 180 #define ABL_PROBE_PT_2_X 15 #define ABL_PROBE_PT_2_Y 20 #define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_Y 20 #endif // !AUTO_BED_LEVELING_GRID //#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" // These commands will be executed in the end of G29 routine. // Useful to retract a deployable Z probe. // If you've enabled AUTO_BED_LEVELING_FEATURE and are using the Z Probe for Z Homing, // it is highly recommended you also enable Z_SAFE_HOMING below! #endif // AUTO_BED_LEVELING_FEATURE // @section homing // The center of the bed is at (X=0, Y=0) #define BED_CENTER_AT_0_0 // Manually set the home position. Leave these undefined for automatic settings. // For DELTA this is the top-center of the Cartesian print volume. //#define MANUAL_X_HOME_POS 0 //#define MANUAL_Y_HOME_POS 0 #define MANUAL_Z_HOME_POS 338 // Distance between the nozzle to printbed after homing // Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area. // // With this feature enabled: // // - Allow Z homing only after X and Y homing AND stepper drivers still enabled. // - If stepper drivers time out, it will need X and Y homing again before Z homing. // - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28). // - Prevent Z homing when the Z probe is outside bed area. #define Z_SAFE_HOMING #if ENABLED(Z_SAFE_HOMING) #define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2) // X point for Z homing when homing all axis (G28). #define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2) // Y point for Z homing when homing all axis (G28). #endif // Delta only homes to Z #define HOMING_FEEDRATE_Z (100*60) //============================================================================= //============================= Additional Features =========================== //============================================================================= // @section extras // // EEPROM // // The microcontroller can store settings in the EEPROM, e.g. max velocity... // M500 - stores parameters in EEPROM // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. //define this to enable EEPROM support #define EEPROM_SETTINGS #if ENABLED(EEPROM_SETTINGS) // To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out: #define EEPROM_CHITCHAT // Please keep turned on if you can. #endif // // Host Keepalive // // When enabled Marlin will send a busy status message to the host // every couple of seconds when it can't accept commands. // #define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages #define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113. // // M100 Free Memory Watcher // #define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose // // G20/G21 Inch mode support // #define INCH_MODE_SUPPORT // // M149 Set temperature units support // #define TEMPERATURE_UNITS_SUPPORT // @section temperature // Preheat Constants #define PREHEAT_1_TEMP_HOTEND 200 #define PREHEAT_1_TEMP_BED 70 #define PREHEAT_1_FAN_SPEED 255 // Value from 0 to 255 #define PREHEAT_2_TEMP_HOTEND 240 #define PREHEAT_2_TEMP_BED 100 #define PREHEAT_2_FAN_SPEED 255 // Value from 0 to 255 // // Nozzle Park -- EXPERIMENTAL // // When enabled allows the user to define a special XYZ position, inside the // machine's topology, to park the nozzle when idle or when receiving the G27 // command. // // The "P" paramenter controls what is the action applied to the Z axis: // P0: (Default) If current Z-pos is lower than Z-park then the nozzle will // be raised to reach Z-park height. // // P1: No matter the current Z-pos, the nozzle will be raised/lowered to // reach Z-park height. // // P2: The nozzle height will be raised by Z-park amount but never going over // the machine's limit of Z_MAX_POS. // #define NOZZLE_PARK_FEATURE #if ENABLED(NOZZLE_PARK_FEATURE) // Specify a park position as { X, Y, Z } #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 } #endif // // Clean Nozzle Feature -- EXPERIMENTAL // // When enabled allows the user to send G12 to start the nozzle cleaning // process, the G-Code accepts two parameters: // "P" for pattern selection // "S" for defining the number of strokes/repetitions // // Available list of patterns: // P0: This is the default pattern, this process requires a sponge type // material at a fixed bed location, the cleaning process is based on // "strokes" i.e. back-and-forth movements between the starting and end // points. // // P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T" // defines the number of zig-zag triangles to be done. "S" defines the // number of strokes aka one back-and-forth movement. As an example // sending "G12 P1 S1 T3" will execute: // // -- // | (X0, Y1) | /\ /\ /\ | (X1, Y1) // | | / \ / \ / \ | // A | | / \ / \ / \ | // | | / \ / \ / \ | // | (X0, Y0) | / \/ \/ \ | (X1, Y0) // -- +--------------------------------+ // |________|_________|_________| // T1 T2 T3 // // Caveats: End point Z should use the same value as Start point Z. // // Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments // may change to add new functionality like different wipe patterns. // #define NOZZLE_CLEAN_FEATURE #if ENABLED(NOZZLE_CLEAN_FEATURE) // Number of pattern repetitions #define NOZZLE_CLEAN_STROKES 12 // Specify positions as { X, Y, Z } #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)} #define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)} // Moves the nozzle to the initial position #define NOZZLE_CLEAN_GOBACK #endif // // Print job timer // // Enable this option to automatically start and stop the // print job timer when M104/M109/M190 commands are received. // M104 (extruder without wait) - high temp = none, low temp = stop timer // M109 (extruder with wait) - high temp = start timer, low temp = stop timer // M190 (bed with wait) - high temp = start timer, low temp = none // // In all cases the timer can be started and stopped using // the following commands: // // - M75 - Start the print job timer // - M76 - Pause the print job timer // - M77 - Stop the print job timer #define PRINTJOB_TIMER_AUTOSTART // // Print Counter // // When enabled Marlin will keep track of some print statistical data such as: // - Total print jobs // - Total successful print jobs // - Total failed print jobs // - Total time printing // // This information can be viewed by the M78 command. #define PRINTCOUNTER //============================================================================= //============================= LCD and SD support ============================ //============================================================================= // @section lcd // // LCD LANGUAGE // // Here you may choose the language used by Marlin on the LCD menus, the following // list of languages are available: // en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it, // kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, test // // :{'en':'English','an':'Aragonese','bg':'Bulgarian','ca':'Catalan','cn':'Chinese','cz':'Czech','de':'German','el':'Greek','el-gr':'Greek (Greece)','es':'Spanish','eu':'Basque-Euskera','fi':'Finnish','fr':'French','gl':'Galician','hr':'Croatian','it':'Italian','kana':'Japanese','kana_utf8':'Japanese (UTF8)','nl':'Dutch','pl':'Polish','pt':'Portuguese','pt-br':'Portuguese (Brazilian)','pt-br_utf8':'Portuguese (Brazilian UTF8)','pt_utf8':'Portuguese (UTF8)','ru':'Russian','test':'TEST'} // #define LCD_LANGUAGE en // // LCD Character Set // // Note: This option is NOT applicable to Graphical Displays. // // All character-based LCD's provide ASCII plus one of these // language extensions: // // - JAPANESE ... the most common // - WESTERN ... with more accented characters // - CYRILLIC ... for the Russian language // // To determine the language extension installed on your controller: // // - Compile and upload with LCD_LANGUAGE set to 'test' // - Click the controller to view the LCD menu // - The LCD will display Japanese, Western, or Cyrillic text // // See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language // // :['JAPANESE','WESTERN','CYRILLIC'] // #define DISPLAY_CHARSET_HD44780 JAPANESE // // LCD TYPE // // You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2, // 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels // (ST7565R family). (This option will be set automatically for certain displays.) // // IMPORTANT NOTE: The U8glib library is required for Full Graphic Display! // https://github.com/olikraus/U8glib_Arduino // //#define ULTRA_LCD // Character based //#define DOGLCD // Full graphics display // // SD CARD // // SD Card support is disabled by default. If your controller has an SD slot, // you must uncomment the following option or it won't work. // #define SDSUPPORT // // SD CARD: SPI SPEED // // Uncomment ONE of the following items to use a slower SPI transfer // speed. This is usually required if you're getting volume init errors. // //#define SPI_SPEED SPI_HALF_SPEED //#define SPI_SPEED SPI_QUARTER_SPEED //#define SPI_SPEED SPI_EIGHTH_SPEED // // SD CARD: ENABLE CRC // // Use CRC checks and retries on the SD communication. // #define SD_CHECK_AND_RETRY // // ENCODER SETTINGS // // This option overrides the default number of encoder pulses needed to // produce one step. Should be increased for high-resolution encoders. // //#define ENCODER_PULSES_PER_STEP 1 // // Use this option to override the number of step signals required to // move between next/prev menu items. // //#define ENCODER_STEPS_PER_MENU_ITEM 5 /** * Encoder Direction Options * * Test your encoder's behavior first with both options disabled. * * Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION. * Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION. * Reversed Value Editing only? Enable BOTH options. */ // // This option reverses the encoder direction everywhere // // Set this option if CLOCKWISE causes values to DECREASE // //#define REVERSE_ENCODER_DIRECTION // // This option reverses the encoder direction for navigating LCD menus. // // If CLOCKWISE normally moves DOWN this makes it go UP. // If CLOCKWISE normally moves UP this makes it go DOWN. // //#define REVERSE_MENU_DIRECTION // // Individual Axis Homing // // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // //#define INDIVIDUAL_AXIS_HOMING_MENU // // SPEAKER/BUZZER // // If you have a speaker that can produce tones, enable it here. // By default Marlin assumes you have a buzzer with a fixed frequency. // //#define SPEAKER // // The duration and frequency for the UI feedback sound. // Set these to 0 to disable audio feedback in the LCD menus. // // Note: Test audio output with the G-Code: // M300 S P // //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // // CONTROLLER TYPE: Standard // // Marlin supports a wide variety of controllers. // Enable one of the following options to specify your controller. // // // ULTIMAKER Controller. // //#define ULTIMAKERCONTROLLER // // ULTIPANEL as seen on Thingiverse. // //#define ULTIPANEL // // Cartesio UI // http://mauk.cc/webshop/cartesio-shop/electronics/user-interface // //#define CARTESIO_UI // // PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3) // http://reprap.org/wiki/PanelOne // //#define PANEL_ONE // // MaKr3d Makr-Panel with graphic controller and SD support. // http://reprap.org/wiki/MaKr3d_MaKrPanel // //#define MAKRPANEL // // ReprapWorld Graphical LCD // https://reprapworld.com/?products_details&products_id/1218 // //#define REPRAPWORLD_GRAPHICAL_LCD // // Activate one of these if you have a Panucatt Devices // Viki 2.0 or mini Viki with Graphic LCD // http://panucatt.com // //#define VIKI2 //#define miniVIKI // // Adafruit ST7565 Full Graphic Controller. // https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/ // //#define ELB_FULL_GRAPHIC_CONTROLLER // // RepRapDiscount Smart Controller. // http://reprap.org/wiki/RepRapDiscount_Smart_Controller // // Note: Usually sold with a white PCB. // #define REPRAP_DISCOUNT_SMART_CONTROLLER // // GADGETS3D G3D LCD/SD Controller // http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel // // Note: Usually sold with a blue PCB. // //#define G3D_PANEL // // RepRapDiscount FULL GRAPHIC Smart Controller // http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller // //#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // // MakerLab Mini Panel with graphic // controller and SD support - http://reprap.org/wiki/Mini_panel // //#define MINIPANEL // // RepRapWorld REPRAPWORLD_KEYPAD v1.1 // http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626 // // REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key // is pressed, a value of 10.0 means 10mm per click. // //#define REPRAPWORLD_KEYPAD //#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0 // // RigidBot Panel V1.0 // http://www.inventapart.com/ // //#define RIGIDBOT_PANEL // // BQ LCD Smart Controller shipped by // default with the BQ Hephestos 2 and Witbox 2. // //#define BQ_LCD_SMART_CONTROLLER // // CONTROLLER TYPE: I2C // // Note: These controllers require the installation of Arduino's LiquidCrystal_I2C // library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C // // // Elefu RA Board Control Panel // http://www.elefu.com/index.php?route=product/product&product_id=53 // //#define RA_CONTROL_PANEL // // Sainsmart YW Robot (LCM1602) LCD Display // //#define LCD_I2C_SAINSMART_YWROBOT // // Generic LCM1602 LCD adapter // //#define LCM1602 // // PANELOLU2 LCD with status LEDs, // separate encoder and click inputs. // // Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later. // For more info: https://github.com/lincomatic/LiquidTWI2 // // Note: The PANELOLU2 encoder click input can either be directly connected to // a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). // //#define LCD_I2C_PANELOLU2 // // Panucatt VIKI LCD with status LEDs, // integrated click & L/R/U/D buttons, separate encoder inputs. // //#define LCD_I2C_VIKI // // SSD1306 OLED full graphics generic display // //#define U8GLIB_SSD1306 // // SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules // //#define SAV_3DGLCD #if ENABLED(SAV_3DGLCD) //#define U8GLIB_SSD1306 #define U8GLIB_SH1106 #endif // // CONTROLLER TYPE: Shift register panels // // 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH // LCD configuration: http://reprap.org/wiki/SAV_3D_LCD // //#define SAV_3DLCD //============================================================================= //=============================== Extra Features ============================== //============================================================================= // @section extras // Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino //#define FAST_PWM_FAN // Use software PWM to drive the fan, as for the heaters. This uses a very low frequency // which is not as annoying as with the hardware PWM. On the other hand, if this frequency // is too low, you should also increment SOFT_PWM_SCALE. #define FAN_SOFT_PWM // Incrementing this by 1 will double the software PWM frequency, // affecting heaters, and the fan if FAN_SOFT_PWM is enabled. // However, control resolution will be halved for each increment; // at zero value, there are 128 effective control positions. #define SOFT_PWM_SCALE 1 // Temperature status LEDs that display the hotend and bed temperature. // If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on. // Otherwise the RED led is on. There is 1C hysteresis. #define TEMP_STAT_LEDS // M240 Triggers a camera by emulating a Canon RC-1 Remote // Data from: http://www.doc-diy.net/photo/rc-1_hacked/ //#define PHOTOGRAPH_PIN 23 // SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure //#define SF_ARC_FIX // Support for the BariCUDA Paste Extruder. //#define BARICUDA //define BlinkM/CyzRgb Support #define BLINKM /*********************************************************************\ * R/C SERVO support * Sponsored by TrinityLabs, Reworked by codexmas **********************************************************************/ // Number of servos // // If you select a configuration below, this will receive a default value and does not need to be set manually // set it manually if you have more servos than extruders and wish to manually control some // leaving it undefined or defining as 0 will disable the servo subsystem // If unsure, leave commented / disabled // //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command // Delay (in microseconds) before the next move will start, to give the servo time to reach its target angle. // 300ms is a good value but you can try less delay. // If the servo can't reach the requested position, increase it. #define SERVO_DELAY 300 // Servo deactivation // // With this option servos are powered only during movement, then turned off to prevent jitter. //#define DEACTIVATE_SERVOS_AFTER_MOVE /**********************************************************************\ * Support for a filament diameter sensor * Also allows adjustment of diameter at print time (vs at slicing) * Single extruder only at this point (extruder 0) * * Motherboards * 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector * 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E) * 301 - Rambo - uses Analog input 3 * Note may require analog pins to be defined for different motherboards **********************************************************************/ // Uncomment below to enable //#define FILAMENT_WIDTH_SENSOR #define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation #if ENABLED(FILAMENT_WIDTH_SENSOR) #define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2) #define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel #define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm #define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm #define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM) #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially //When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec. //#define FILAMENT_LCD_DISPLAY #endif #endif // CONFIGURATION_H ```
Configuration_adv.h ``` cpp /** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Configuration_adv.h * * Advanced settings. * Only change these if you know exactly what you're doing. * Some of these settings can damage your printer if improperly set! * * Basic settings can be found in Configuration.h * */ #ifndef CONFIGURATION_ADV_H #define CONFIGURATION_ADV_H /** * * *********************************** * ** ATTENTION TO ALL DEVELOPERS ** * *********************************** * * You must increment this version number for every significant change such as, * but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option. * * Note: Update also Version.h ! */ #define CONFIGURATION_ADV_H_VERSION 010100 // @section temperature //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== #if DISABLED(PIDTEMPBED) #define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control #if ENABLED(BED_LIMIT_SWITCHING) #define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #endif #endif /** * Thermal Protection protects your printer from damage and fire if a * thermistor falls out or temperature sensors fail in any way. * * The issue: If a thermistor falls out or a temperature sensor fails, * Marlin can no longer sense the actual temperature. Since a disconnected * thermistor reads as a low temperature, the firmware will keep the heater on. * * The solution: Once the temperature reaches the target, start observing. * If the temperature stays too far below the target (hysteresis) for too long (period), * the firmware will halt the machine as a safety precaution. * * If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD */ #if ENABLED(THERMAL_PROTECTION_HOTENDS) #define THERMAL_PROTECTION_PERIOD 40 // Seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius /** * Whenever an M104 or M109 increases the target temperature the firmware will wait for the * WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE * degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109, * but only if the current temperature is far enough below the target for a reliable test. * * If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE * WATCH_TEMP_INCREASE should not be below 2. */ #define WATCH_TEMP_PERIOD 20 // Seconds #define WATCH_TEMP_INCREASE 2 // Degrees Celsius #endif /** * Thermal Protection parameters for the bed are just as above for hotends. */ #if ENABLED(THERMAL_PROTECTION_BED) #define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds #define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius /** * Whenever an M140 or M190 increases the target temperature the firmware will wait for the * WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE * degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190, * but only if the current temperature is far enough below the target for a reliable test. * * If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease * WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.) */ #define WATCH_BED_TEMP_PERIOD 60 // Seconds #define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius #endif #if ENABLED(PIDTEMP) // this adds an experimental additional term to the heating power, proportional to the extrusion speed. // if Kc is chosen well, the additional required power due to increased melting should be compensated. #define PID_EXTRUSION_SCALING #if ENABLED(PID_EXTRUSION_SCALING) #define DEFAULT_Kc (100) //heating power=Kc*(e_speed) #define LPQ_MAX_LEN 50 #endif #endif /** * Automatic Temperature: * The hotend target temperature is calculated by all the buffered lines of gcode. * The maximum buffered steps/sec of the extruder motor is called "se". * Start autotemp mode with M109 S B F * The target temperature is set to mintemp+factor*se[steps/sec] and is limited by * mintemp and maxtemp. Turn this off by executing M109 without F* * Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp. * On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode */ #define AUTOTEMP #if ENABLED(AUTOTEMP) #define AUTOTEMP_OLDWEIGHT 0.98 #endif //Show Temperature ADC value //The M105 command return, besides traditional information, the ADC value read from temperature sensors. //#define SHOW_TEMP_ADC_VALUES /** * High Temperature Thermistor Support * * Thermistors able to support high temperature tend to have a hard time getting * good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP * will probably be caught when the heating element first turns on during the * preheating process, which will trigger a min_temp_error as a safety measure * and force stop everything. * To circumvent this limitation, we allow for a preheat time (during which, * min_temp_error won't be triggered) and add a min_temp buffer to handle * aberrant readings. * * If you want to enable this feature for your hotend thermistor(s) * uncomment and set values > 0 in the constants below */ // The number of consecutive low temperature errors that can occur // before a min_temp_error is triggered. (Shouldn't be more than 10.) //#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0 // The number of milliseconds a hotend will preheat before starting to check // the temperature. This value should NOT be set to the time it takes the // hot end to reach the target temperature, but the time it takes to reach // the minimum temperature your thermistor can read. The lower the better/safer. // This shouldn't need to be more than 30 seconds (30000) //#define MILLISECONDS_PREHEAT_TIME 0 // @section extruder // Extruder runout prevention. // If the machine is idle and the temperature over MINTEMP // then extrude some filament every couple of SECONDS. //#define EXTRUDER_RUNOUT_PREVENT #if ENABLED(EXTRUDER_RUNOUT_PREVENT) #define EXTRUDER_RUNOUT_MINTEMP 190 #define EXTRUDER_RUNOUT_SECONDS 30 #define EXTRUDER_RUNOUT_SPEED 1500 // mm/m #define EXTRUDER_RUNOUT_EXTRUDE 5 // mm #endif // @section temperature //These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements. //The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET" #define TEMP_SENSOR_AD595_OFFSET 0.0 #define TEMP_SENSOR_AD595_GAIN 1.0 //This is for controlling a fan to cool down the stepper drivers //it will turn on when any driver is enabled //and turn off after the set amount of seconds from last driver being disabled again #define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable) #define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run #define CONTROLLERFAN_SPEED 128 // == full speed // When first starting the main fan, run it at full speed for the // given number of milliseconds. This gets the fan spinning reliably // before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu) //#define FAN_KICKSTART_TIME 100 // This defines the minimal speed for the main fan, run in PWM mode // to enable uncomment and set minimal PWM speed for reliable running (1-255) // if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM //#define FAN_MIN_PWM 50 // @section extruder // Extruder cooling fans // Configure fan pin outputs to automatically turn on/off when the associated // extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE. // Multiple extruders can be assigned to the same pin in which case // the fan will turn on when any selected extruder is above the threshold. #define EXTRUDER_0_AUTO_FAN_PIN -1 #define EXTRUDER_1_AUTO_FAN_PIN -1 #define EXTRUDER_2_AUTO_FAN_PIN -1 #define EXTRUDER_3_AUTO_FAN_PIN -1 #define EXTRUDER_AUTO_FAN_TEMPERATURE 50 #define EXTRUDER_AUTO_FAN_SPEED 128 // == full speed //=========================================================================== //============================ Mechanical Settings ========================== //=========================================================================== // @section homing // If you want endstops to stay on (by default) even when not homing // enable this option. Override at any time with M120, M121. //#define ENDSTOPS_ALWAYS_ON_DEFAULT // @section extras //#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats. // Dual X Steppers // Uncomment this option to drive two X axis motors. // The next unused E driver will be assigned to the second X stepper. //#define X_DUAL_STEPPER_DRIVERS #if ENABLED(X_DUAL_STEPPER_DRIVERS) // Set true if the two X motors need to rotate in opposite directions #define INVERT_X2_VS_X_DIR true #endif // Dual Y Steppers // Uncomment this option to drive two Y axis motors. // The next unused E driver will be assigned to the second Y stepper. //#define Y_DUAL_STEPPER_DRIVERS #if ENABLED(Y_DUAL_STEPPER_DRIVERS) // Set true if the two Y motors need to rotate in opposite directions #define INVERT_Y2_VS_Y_DIR true #endif // A single Z stepper driver is usually used to drive 2 stepper motors. // Uncomment this option to use a separate stepper driver for each Z axis motor. // The next unused E driver will be assigned to the second Z stepper. //#define Z_DUAL_STEPPER_DRIVERS #if ENABLED(Z_DUAL_STEPPER_DRIVERS) // Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper. // That way the machine is capable to align the bed during home, since both Z steppers are homed. // There is also an implementation of M666 (software endstops adjustment) to this feature. // After Z homing, this adjustment is applied to just one of the steppers in order to align the bed. // One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2. // If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive. // Play a little bit with small adjustments (0.5mm) and check the behaviour. // The M119 (endstops report) will start reporting the Z2 Endstop as well. //#define Z_DUAL_ENDSTOPS #if ENABLED(Z_DUAL_ENDSTOPS) #define Z2_USE_ENDSTOP _XMAX_ #endif #endif // Z_DUAL_STEPPER_DRIVERS // Enable this for dual x-carriage printers. // A dual x-carriage design has the advantage that the inactive extruder can be parked which // prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage // allowing faster printing speeds. Connect your X2 stepper to the first unused E plug. //#define DUAL_X_CARRIAGE #if ENABLED(DUAL_X_CARRIAGE) // Configuration for second X-carriage // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; // the second x-carriage always homes to the maximum endstop. #define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage #define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed #define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position // However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops // without modifying the firmware (through the "M218 T1 X???" command). // Remember: you should set the second extruder x-offset to 0 in your slicer. // There are a few selectable movement modes for dual x-carriages using M605 S // Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results // as long as it supports dual x-carriages. (M605 S0) // Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so // that additional slicer support is not required. (M605 S1) // Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all // actions of the first x-carriage. This allows the printer to print 2 arbitrary items at // once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) // This is the default power-up mode which can be later using M605. #define DEFAULT_DUAL_X_CARRIAGE_MODE 0 // Default settings in "Auto-park Mode" #define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder #define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder // Default x offset in duplication mode (typically set to half print bed width) #define DEFAULT_DUPLICATION_X_OFFSET 100 #endif //DUAL_X_CARRIAGE // @section homing //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: #define X_HOME_BUMP_MM 2 #define Y_HOME_BUMP_MM 2 #define Z_HOME_BUMP_MM 2 // deltas need the same for all three axis #define HOMING_BUMP_DIVISOR {10, 10, 10} // Re-Bump Speed Divisor (Divides the Homing Feedrate) //#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially. // When G28 is called, this option will make Y home before X //#define HOME_Y_BEFORE_X // @section machine #define AXIS_RELATIVE_MODES {false, false, false, false} // Allow duplication mode with a basic dual-nozzle extruder //#define DUAL_NOZZLE_DUPLICATION_MODE // By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step. #define INVERT_X_STEP_PIN false #define INVERT_Y_STEP_PIN false #define INVERT_Z_STEP_PIN false #define INVERT_E_STEP_PIN false // Default stepper release if idle. Set to 0 to deactivate. // Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true. // Time can be set by M18 and M84. #define DEFAULT_STEPPER_DEACTIVE_TIME 0 #define DISABLE_INACTIVE_X true #define DISABLE_INACTIVE_Y true #define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished. #define DISABLE_INACTIVE_E true #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 // @section lcd #if ENABLED(ULTIPANEL) #define MANUAL_FEEDRATE_XYZ 50*60 #define MANUAL_FEEDRATE { MANUAL_FEEDRATE_XYZ, MANUAL_FEEDRATE_XYZ, MANUAL_FEEDRATE_XYZ, 60 } // Feedrates for manual moves along X, Y, Z, E from panel #define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder #endif // @section extras // minimum time in microseconds that a movement needs to take if the buffer is emptied. #define DEFAULT_MINSEGMENTTIME 20000 // If defined the movements slow down when the look ahead buffer is only half full // (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second) //#define SLOWDOWN // Frequency limit // See nophead's blog for more info // Not working O //#define XY_FREQUENCY_LIMIT 15 // Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end // of the buffer and all stops. This should not be much greater than zero and should only be changed // if unwanted behavior is observed on a user's machine when running at very slow speeds. #define MINIMUM_PLANNER_SPEED 0.05// (mm/sec) // Microstep setting (Only functional when stepper driver microstep pins are connected to MCU. #define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16] // Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards) #define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) // Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current) //#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps // uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro //#define DIGIPOT_I2C // Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8 #define DIGIPOT_I2C_NUM_CHANNELS 8 // actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} //=========================================================================== //=============================Additional Features=========================== //=========================================================================== #define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly #define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value #define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value //#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/ #define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again // @section lcd // Include a page of printer information in the LCD Main Menu #define LCD_INFO_MENU #if ENABLED(SDSUPPORT) // Some RAMPS and other boards don't detect when an SD card is inserted. You can work // around this by connecting a push button or single throw switch to the pin defined // as SD_DETECT_PIN in your board's pins definitions. // This setting should be disabled unless you are using a push button, pulling the pin to ground. // Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER). #define SD_DETECT_INVERTED #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place. #define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order. // if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that. // using: //#define MENU_ADDAUTOSTART // Show a progress bar on HD44780 LCDs for SD printing #define LCD_PROGRESS_BAR #if ENABLED(LCD_PROGRESS_BAR) // Amount of time (ms) to show the bar #define PROGRESS_BAR_BAR_TIME 2000 // Amount of time (ms) to show the status message #define PROGRESS_BAR_MSG_TIME 3000 // Amount of time (ms) to retain the status message (0=forever) #define PROGRESS_MSG_EXPIRE 0 // Enable this to show messages for MSG_TIME then hide them //#define PROGRESS_MSG_ONCE #endif // This allows hosts to request long names for files and folders with M33 #define LONG_FILENAME_HOST_SUPPORT // This option allows you to abort SD printing when any endstop is triggered. // This feature must be enabled with "M540 S1" or from the LCD menu. // To have any effect, endstops must be enabled during SD printing. #define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #endif // SDSUPPORT // for dogm lcd displays you can choose some additional fonts: #if ENABLED(DOGLCD) // save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT // we don't have a big font for Cyrillic, Kana //#define USE_BIG_EDIT_FONT // If you have spare 2300Byte of progmem and want to use a // smaller font on the Info-screen uncomment the next line. //#define USE_SMALL_INFOFONT #endif // DOGLCD // @section safety // The hardware watchdog should reset the microcontroller disabling all outputs, // in case the firmware gets stuck and doesn't do temperature regulation. #define USE_WATCHDOG #if ENABLED(USE_WATCHDOG) // If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on. // The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset. // However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled. //#define WATCHDOG_RESET_MANUAL #endif // @section lcd // Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process // it can e.g. be used to change z-positions in the print startup phase in real-time // does not respect endstops! #define BABYSTEPPING #if ENABLED(BABYSTEPPING) //#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions //not implemented for deltabots! #define BABYSTEP_INVERT_Z false //true for inverse movements in Z #define BABYSTEP_MULTIPLICATOR 1 //faster movements #endif // @section extruder // extruder advance constant (s2/mm3) // // advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2 // // Hooke's law says: force = k * distance // Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant // so: v ^ 2 is proportional to number of steps we advance the extruder //#define ADVANCE #if ENABLED(ADVANCE) #define EXTRUDER_ADVANCE_K .0 #define D_FILAMENT 1.75 #endif // Implementation of a linear pressure control // Assumption: advance = k * (delta velocity) // K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75 #define LIN_ADVANCE #if ENABLED(LIN_ADVANCE) #define LIN_ADVANCE_K 75 #endif // @section leveling // Default mesh area is an area with an inset margin on the print area. // Below are the macros that are used to define the borders for the mesh area, // made available here for specialized needs, ie dual extruder setup. #if ENABLED(MESH_BED_LEVELING) #define MESH_MIN_X (X_MIN_POS + MESH_INSET) #define MESH_MAX_X (X_MAX_POS - (MESH_INSET)) #define MESH_MIN_Y (Y_MIN_POS + MESH_INSET) #define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET)) #endif // @section extras // Arc interpretation settings: #define ARC_SUPPORT // Disabling this saves ~2738 bytes #define MM_PER_ARC_SEGMENT 1 #define N_ARC_CORRECTION 25 // Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes. #define BEZIER_CURVE_SUPPORT // Moves (or segments) with fewer steps than this will be joined with the next move #define MIN_STEPS_PER_SEGMENT 6 // The minimum pulse width (in µs) for stepping a stepper. // Set this if you find stepping unreliable, or if using a very fast CPU. #define MINIMUM_STEPPER_PULSE 0 // (µs) The smallest stepper pulse allowed // @section temperature // Control heater 0 and heater 1 in parallel. //#define HEATERS_PARALLEL //=========================================================================== //================================= Buffers ================================= //=========================================================================== // @section hidden // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering. #if ENABLED(SDSUPPORT) #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else #define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif // @section serial // The ASCII buffer for serial input #define MAX_CMD_SIZE 96 #define BUFSIZE 4 // Transfer Buffer Size // To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0. // To buffer a simple "ok" you need 4 bytes. // For ADVANCED_OK (M105) you need 32 bytes. // For debug-echo: 128 bytes for the optimal speed. // Other output doesn't need to be that speedy. // :[0,2,4,8,16,32,64,128,256] #define TX_BUFFER_SIZE 128 // Enable an emergency-command parser to intercept certain commands as they // enter the serial receive buffer, so they cannot be blocked. // Currently handles M108, M112, M410 // Does not work on boards using AT90USB (USBCON) processors! #define EMERGENCY_PARSER // Bad Serial-connections can miss a received command by sending an 'ok' // Therefore some clients abort after 30 seconds in a timeout. // Some other clients start sending commands while receiving a 'wait'. // This "wait" is only sent when the buffer is empty. 1 second is a good value here. #define NO_TIMEOUTS 1000 // Milliseconds // Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary. #define ADVANCED_OK // @section fwretract // Firmware based and LCD controlled retract // M207 and M208 can be used to define parameters for the retraction. // The retraction can be called by the slicer using G10 and G11 // until then, intended retractions can be detected by moves that only extrude and the direction. // the moves are than replaced by the firmware controlled ones. #define FWRETRACT //ONLY PARTIALLY TESTED #if ENABLED(FWRETRACT) #define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt #define RETRACT_LENGTH 3 //default retract length (positive mm) #define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change #define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s) #define RETRACT_ZLIFT 0 //default retract Z-lift #define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering) #define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change) #define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s) #endif // Add support for experimental filament exchange support M600; requires display #if ENABLED(ULTIPANEL) #define FILAMENT_CHANGE_FEATURE // Enable filament exchange menu and M600 g-code (used for runout sensor too) #if ENABLED(FILAMENT_CHANGE_FEATURE) #define FILAMENT_CHANGE_X_POS 3 // X position of hotend #define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend #define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift) #define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis) #define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers) #define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm // It is a short retract used immediately after print interrupt before move to filament exchange position #define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s #define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm // Longer length for bowden printers to unload filament from whole bowden tube, // shorter lenght for printers without bowden to unload filament from extruder only, // 0 to disable unloading for manual unloading #define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast #define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm // Longer length for bowden printers to fast load filament into whole bowden tube over the hotend, // Short or zero length for printers without bowden where loading is not used #define FILAMENT_CHANGE_LOAD_FEEDRATE 10 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast #define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is load over the hotend, // 0 to disable for manual extrusion // Filament can be extruded repeatedly from the filament exchange menu to fill the hotend, // or until outcoming filament color is not clear for filament color change #define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate #endif #endif /******************************************************************************\ * enable this section if you have TMC26X motor drivers. * you need to import the TMC26XStepper library into the Arduino IDE for this ******************************************************************************/ // @section tmc //#define HAVE_TMCDRIVER #if ENABLED(HAVE_TMCDRIVER) //#define X_IS_TMC #define X_MAX_CURRENT 1000 //in mA #define X_SENSE_RESISTOR 91 //in mOhms #define X_MICROSTEPS 16 //number of microsteps //#define X2_IS_TMC #define X2_MAX_CURRENT 1000 //in mA #define X2_SENSE_RESISTOR 91 //in mOhms #define X2_MICROSTEPS 16 //number of microsteps //#define Y_IS_TMC #define Y_MAX_CURRENT 1000 //in mA #define Y_SENSE_RESISTOR 91 //in mOhms #define Y_MICROSTEPS 16 //number of microsteps //#define Y2_IS_TMC #define Y2_MAX_CURRENT 1000 //in mA #define Y2_SENSE_RESISTOR 91 //in mOhms #define Y2_MICROSTEPS 16 //number of microsteps //#define Z_IS_TMC #define Z_MAX_CURRENT 1000 //in mA #define Z_SENSE_RESISTOR 91 //in mOhms #define Z_MICROSTEPS 16 //number of microsteps //#define Z2_IS_TMC #define Z2_MAX_CURRENT 1000 //in mA #define Z2_SENSE_RESISTOR 91 //in mOhms #define Z2_MICROSTEPS 16 //number of microsteps //#define E0_IS_TMC #define E0_MAX_CURRENT 1000 //in mA #define E0_SENSE_RESISTOR 91 //in mOhms #define E0_MICROSTEPS 16 //number of microsteps //#define E1_IS_TMC #define E1_MAX_CURRENT 1000 //in mA #define E1_SENSE_RESISTOR 91 //in mOhms #define E1_MICROSTEPS 16 //number of microsteps //#define E2_IS_TMC #define E2_MAX_CURRENT 1000 //in mA #define E2_SENSE_RESISTOR 91 //in mOhms #define E2_MICROSTEPS 16 //number of microsteps //#define E3_IS_TMC #define E3_MAX_CURRENT 1000 //in mA #define E3_SENSE_RESISTOR 91 //in mOhms #define E3_MICROSTEPS 16 //number of microsteps #endif /******************************************************************************\ * enable this section if you have L6470 motor drivers. * you need to import the L6470 library into the Arduino IDE for this ******************************************************************************/ // @section l6470 //#define HAVE_L6470DRIVER #if ENABLED(HAVE_L6470DRIVER) //#define X_IS_L6470 #define X_MICROSTEPS 16 //number of microsteps #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define X2_IS_L6470 #define X2_MICROSTEPS 16 //number of microsteps #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define Y_IS_L6470 #define Y_MICROSTEPS 16 //number of microsteps #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define Y2_IS_L6470 #define Y2_MICROSTEPS 16 //number of microsteps #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define Z_IS_L6470 #define Z_MICROSTEPS 16 //number of microsteps #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define Z2_IS_L6470 #define Z2_MICROSTEPS 16 //number of microsteps #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define E0_IS_L6470 #define E0_MICROSTEPS 16 //number of microsteps #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define E1_IS_L6470 #define E1_MICROSTEPS 16 //number of microsteps #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define E2_IS_L6470 #define E2_MICROSTEPS 16 //number of microsteps #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall //#define E3_IS_L6470 #define E3_MICROSTEPS 16 //number of microsteps #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall #endif /** * TWI/I2C BUS * * This feature is an EXPERIMENTAL feature so it shall not be used on production * machines. Enabling this will allow you to send and receive I2C data from slave * devices on the bus. * * ; Example #1 * ; This macro send the string "Marlin" to the slave device with address 0x63 (99) * ; It uses multiple M155 commands with one B arg * M155 A99 ; Target slave address * M155 B77 ; M * M155 B97 ; a * M155 B114 ; r * M155 B108 ; l * M155 B105 ; i * M155 B110 ; n * M155 S1 ; Send the current buffer * * ; Example #2 * ; Request 6 bytes from slave device with address 0x63 (99) * M156 A99 B5 * * ; Example #3 * ; Example serial output of a M156 request * echo:i2c-reply: from:99 bytes:5 data:hello */ // @section i2cbus #define EXPERIMENTAL_I2CBUS #define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave #endif // CONFIGURATION_ADV_H ```
thinkyhead commented 7 years ago

Also: Is the pulse duration in advance_isr too short? There is no added delay, and with only a single E stepper, this might cause some issue.

But your report is interesting, because the stepper direction is definitely being set there:

SET_E_STEP_DIR(0);
#if E_STEPPERS > 1
  SET_E_STEP_DIR(1);
  #if E_STEPPERS > 2
    SET_E_STEP_DIR(2);
    #if E_STEPPERS > 3
      SET_E_STEP_DIR(3);
    #endif
  #endif
#endif
thinkyhead commented 7 years ago

I can see a couple possible changes that may help. Try this…

In the Stepper::set_directions() method change:

  #if DISABLED(ADVANCE)
    if (motor_direction(E_AXIS)) {
      REV_E_DIR();
      count_direction[E_AXIS] = -1;
    }
    else {
      NORM_E_DIR();
      count_direction[E_AXIS] = 1;
    }
  #endif //!ADVANCE

…so it always sets the direction for E, even with regular ADVANCE enabled…

  if (motor_direction(E_AXIS)) {
    REV_E_DIR();
    count_direction[E_AXIS] = -1;
  }
  else {
    NORM_E_DIR();
    count_direction[E_AXIS] = 1;
  }

That doesn't affect LIN_ADVANCE, only regular ADVANCE. I can't see why ADVANCE would want to do it any differently. As long as the two ISRs are properly synchronizing, there should be no need to wait until the advance_isr to set E stepper directions. Maybe –just maybe– the concern is that advance_isr may not be done at the point where the new block is starting. In which case, maybe this needs to be skipped for both types of advance extrusion.

The other change to make, along with the one above, is: In Stepper::advance_isr() drop the code that sets the E direction by removing this:

#define SET_E_STEP_DIR(INDEX) \
  E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)

…and this…

SET_E_STEP_DIR(0);
#if E_STEPPERS > 1
  SET_E_STEP_DIR(1);
  #if E_STEPPERS > 2
    SET_E_STEP_DIR(2);
    #if E_STEPPERS > 3
      SET_E_STEP_DIR(3);
    #endif
  #endif
#endif

According to my reading of the code, either one or the other of these should be kept, but not both. If anything should be fixed, it is that the E stepper directions should only be set once, when initializing the advance_isr for a new block, and not within the ISR itself.

thinkyhead commented 7 years ago

One other thing, maybe…

  #if ENABLED(LIN_ADVANCE)
-   volatile int Stepper::e_steps[E_STEPPERS];
+   volatile long Stepper::e_steps[E_STEPPERS];

Allowing more than 32,767 E steps. Probably needed for long straight lines when using high microstepping.

ghost commented 7 years ago

About ADVANCE:

-  #if DISABLED(ADVANCE)
    if (motor_direction(E_AXIS)) {
      REV_E_DIR();
      count_direction[E_AXIS] = -1;
    }
    else {
      NORM_E_DIR();
      count_direction[E_AXIS] = 1;
    }
-  #endif //!ADVANCE

It seems that this is a precise fixing. Direction signal works rightly. (but stepper signal is still inverted)

g1 e100 f1200 g1 e100 f3000
newfile5 newfile6

About LIN_ADVANCE:

-#define SET_E_STEP_DIR(INDEX) \
-  E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
-SET_E_STEP_DIR(0);
-#if E_STEPPERS > 1
-  SET_E_STEP_DIR(1);
-  #if E_STEPPERS > 2
-    SET_E_STEP_DIR(2);
-    #if E_STEPPERS > 3
-      SET_E_STEP_DIR(3);
-    #endif
-  #endif
-#endif

It seems that these are precise fixing, too. (but stepper signal is still inverted, too.)

g1 e100 f1200 g1 e100 f3000
newfile1 newfile2

About pulse width and period:

Is the pulse duration in advance_isr too short?

In case of ADVANCED and LIN_ADVANCED and no added any delays, HIGH (but inverted) pulse width is 1.6 ~ 1.8μs, LOW pulse width on multi-stepping mode is under 1μs, pulse period is 2.6μs (≒ 384.61KHz).

From datasheets, A4988 and A5984 needs 1μs HIGH/LOW pulse width at least, DRV8824, DRV8825, and DRV8834 needs 1.9μs HIGH/LOW pulse width at least, and 250KHz (4μs) step frequency(pulse period)is maximum. DRV8880 needs 470ns HIGH/LOW pulse width at least, and 1MHz (1μs) step frequency(pulse period) is maximum. TMC2100 needs 120ns HIGH/LOW pulse width at least. About THB6128(RAPS128), I don’t get it... (needs 40ns HIGH/LOW pulse width at least?)

ghost commented 7 years ago

About LIN_ADVANCE part2:

  #if ENABLED(LIN_ADVANCE)
-   volatile int Stepper::e_steps[E_STEPPERS];
+   volatile long Stepper::e_steps[E_STEPPERS];

I saw strange phenomenon. When I changed the e_steps[] from volatile int to volatile long, HIGH pulse width grew to 3μs, LOW pulse width on multi-stepping mode grew to 1.4μs, pulse period grew to 4.4μs (≒ 227.27KHz) for some reason...

g1 e100 f1200 g1 e100 f3000
newfile3 newfile4

Allowing more than 32,767 E steps.

2,147,450,880? This is my misunderstanding, sorry.

A branch that it's being used for test: https://github.com/esenapaj/Marlin/tree/testes

ghost commented 7 years ago

About inverted stepper signal: It seems that it's simple bug. In advance_isr(),

    #define START_E_PULSE(INDEX) \
-      if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)
+      if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)

    #define STOP_E_PULSE(INDEX) \
      if (e_steps[INDEX]) { \
        e_steps[INDEX] <= 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
-        E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
+        E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
      }

Results looks like good. g1 e100 f3000

ADVANCE LIN_ADVANCE
newfile2 2 newfile2
thinkyhead commented 7 years ago

Good sleuthing! One of us should make a PR soon!

Oscilloscopes FTW!

thinkyhead commented 7 years ago

When I changed the e_steps[] from volatile int to volatile long, HIGH pulse width grew to 3μs, LOW pulse width on multi-stepping mode grew to 1.4μs, pulse period grew to 4.4μs (≒ 227.27KHz) for some reason

I'm guessing long takes long'er to process. But this is probably a good thing. Pulse widths are probably too small. I think 8-9µs is considered best.

mosh1 commented 7 years ago

Very good sleuthing indeed. What is the theoretical effect of these issues when running with LIN_ADVANCE and these bugs not fixed?

thinkyhead commented 7 years ago

Theoretically, erratic behavior.

ghost commented 7 years ago

I submitted a PR.

But, maybe more research and improvements are needed.

About pulse width: g1 e100 f3000

Normal (not advance algorithms ) ADVANCE LIN_ADVANCE
ds1z_quickprint1 newfile2 2 newfile2
Normal ADVANCE LIN_ADVANCE
HIGH pulse width (μs) 6.7 1.81 3.0
LOW pulse width (μs) 13.1 1.31 1.38
Pulse period (μs) 19.8 3.12 4.38
minimum requirements specification DRV8825 M542T
HIGH pulse width (μs) 1.9 1.5
LOW pulse width (μs) 1.9 1.5
Pulse period (μs) 4.0 3.0?

Marlin can adjust HIGH pulse width by MINIMUM_STEPPER_PULSE, but hasn't solution for changing LOW pulse width.

ghost commented 7 years ago

About between enable signal (EN) and direction signal (DIR), between direction signal and stepping signal (STP):

minimum requirements specification DRV8825 M542T
EN - DIR (μs) 0.65 > 5
DIR - STP (μs) 0.65 > 5

But maybe anyone hasn't grasped at this time that how much Marlin has those.

About limitation of ISR frequency of ADVANCE and LIN_ADVANCE: I'm seeing that "dead zone" exists in transition of stepping rate with 5.18 : 1 geared extruder at 32 micro-stepping (Bondtech QR, about 950steps / mm). In case of LIN_ADVANCE, When I order g1 e100 f600 (single-stepping), pulse timing fall into disorder, subsequently, Marlin freeze completely. Green LED flash repeatedly, watchdog and reset button on RAMPS doesn't work. It needs complete power off. But when I order g1 e100 f630 (double-stepping), it looks like stable. I'm still researching now.

LIN_ADVANCE

g1 e100 f600 g1 e100 f630
ds1z_quickprint2 ds1z_quickprint3
ghost commented 7 years ago

I'm guessing long takes long'er to process.

It appears so. This is benchmark program that it was ported from Arduino Playground - ShowInfo

ShowInfo ``` cpp // ----------------------------------------------------- // Arduino ShowInfo // Show what the Arduino has to tell you. // // 23 October 2016: Add 64bit int test // Add double test // Support dtostrf(), random(), y |= (1< #else #include #endif #include #ifndef _BV #define _BV(b) (1 << (b)) #endif void setup() { // The system led is present on most Arduino boards. pinMode(13,OUTPUT); Serial.begin(9600); #if defined (__AVR_ATmega32U4__) while(!Serial); // For Leonardo, wait for serial port #endif Serial.println(F("Arduino ShowInfo")); Serial.println(F("Show what the Arduino has to tell you.")); ShowMenu(); } void loop() { int incomingByte, i, n; if (Serial.available() > 0) { incomingByte = Serial.read(); switch (incomingByte) { #if !defined (__AVR_ATmega32U4__) case '0': Serial.println(F("System LED off")); digitalWrite(13,LOW); Serial.println(F("-----------")); break; case '1': Serial.println(F("System LED on")); digitalWrite(13,HIGH); Serial.println(F("-----------")); break; case '2': i2c_scanner(); break; #endif case 'i': Information(); break; case 'r': Serial.println(F("Test serial communcation")); Serial.println(F("Will your terminal program send characters immediately?")); Serial.println(F("Enter characters, followed by Enter")); for (i=0; i<25; i++) { Serial.print(F("Serial.available() = ")); n = Serial.available(); Serial.print(n,DEC); Serial.print(F(" Serial.peek() = ")); n = Serial.peek(); Serial.println(n,DEC); delay(500); } // empty the buffer of incoming data while (Serial.available() > 0) Serial.read(); Serial.println(F("-----------")); break; case 's': SpeedTest(); break; #ifndef __SAM3X8E__ #if !defined (__AVR_ATmega32U4__) case 't': TimerRegisterDump(); break; #endif #endif case 'h': case '?': ShowMenu(); break; // Ignore some characters, like the carriage return and line feed. case '\'': case '\r': case '\n': break; default: Serial.print(F("Unknown command: 0x")); Serial.println(incomingByte,HEX); Serial.println(F("Type '?' followed by Enter")); // Something could be wrong, delete incoming data in buffer while (Serial.available() > 0) Serial.read(); Serial.println(F("-----------")); break; } } } void ShowMenu(void) { Serial.println(F("")); Serial.println(F("Menu")); Serial.println(F("-----------")); #if !defined (__AVR_ATmega32U4__) Serial.println(F("0 = System LED off")); Serial.println(F("1 = System LED on")); Serial.println(F("2 = i2c_scanner")); #endif Serial.println(F("i = Show information")); Serial.println(F("h = Show menu")); Serial.println(F("r = Test serial communication")); Serial.println(F("s = Speed tests")); #if !defined (__AVR_ATmega32U4__) Serial.println(F("t = Timer Register Dump")); #endif Serial.println(F("? = Show menu")); Serial.println(F("")); Serial.println(F("Type command, followed by Enter")); } float GetTemp(void) { unsigned int wADC; float t; // The internal temperature has to be used // with the internal reference of 1.1V. // Channel 8 can not be selected with // the analogRead function yet. // This code is not valid for the Arduino Mega, // and the Arduino Mega 2560. #ifndef __SAM3X8E__ #ifdef THIS_MIGHT_BE_VALID_IN_THE_FUTURE analogReference (INTERNAL); delay(20); // wait for voltages to become stable. wADC = analogRead(8); // Channel 8 is temperature sensor. #else // Set the internal reference and mux. ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3)); ADCSRA |= _BV(ADEN); // enable the ADC delay(20); // wait for voltages to become stable. ADCSRA |= _BV(ADSC); // Start the ADC // Detect end-of-conversion while (bit_is_set(ADCSRA,ADSC)); // Reading register "ADCW" takes care of how to read ADCL and ADCH. #if defined (__AVR_ATmega32U4__) wADC = ADC; // For Arduino Leonardo #else wADC = ADCW; // 'ADCW' is preferred over 'ADC' #endif #endif #endif // The offset of 337.0 could be wrong. It is just an indication. t = (wADC - 337.0 ) / 1.22; return (t); } // Helper function for free ram. // With use of http://playground.arduino.cc/Code/AvailableMemory // int freeRam(void) { extern unsigned int __heap_start; extern void *__brkval; int free_memory; int stack_here; if (__brkval == 0) free_memory = (int) &stack_here - (int) &__heap_start; else free_memory = (int) &stack_here - (int) __brkval; return (free_memory); } // Helper function for sketch size. // The sketch size is runtime calculated. // From user "Coding Badly" in his post: // http://arduino.cc/forum/index.php/topic,115870.msg872309.html#msg872309 // Changed into unsigned long for code size larger than 64kB. // // This function returns the sketch size // for a size between 0 and 32k. If the code // size is larger (for example with an Arduino Mega), // the return value is not valid. // unsigned long sketchSize(void) { extern int _etext; extern int _edata; return ((unsigned long)(&_etext) + ((unsigned long)(&_edata) - 256L)); } void Information(void) { int i,j; int data1,data2,data3,data4; unsigned long ul; float percentage; Serial.println(F("")); #ifndef __SAM3X8E__ #if !defined (__AVR_ATmega32U4__) Serial.println(F("Information")); Serial.println(F("-----------")); Serial.print(F("sketch Size = ")); ul = sketchSize(); Serial.print(ul,DEC); Serial.print(F(" (")); percentage = (float) ul / ((float) FLASHEND + 1.0) * 100.0; Serial.print(percentage,0); Serial.println(F("%)")); Serial.print(F("free RAM = ")); i = freeRam(); Serial.println(i,DEC); Serial.print(F("RAM used = ")); j = (RAMEND + 1) - i; Serial.print(j, DEC); Serial.print(F(" (")); percentage = (float) j / ((float) RAMEND + 1.0) * 100.0; Serial.print(percentage,0); Serial.println(F("%)")); #endif #endif Serial.print(F("ARDUINO = ")); Serial.print(ARDUINO); Serial.print(F(" (Arduino version ")); Serial.print( (float) ARDUINO / 100.0, 2); Serial.println(F(")")); Serial.print(F("__VERSION__ = ")); Serial.println(F(__VERSION__)); Serial.print(F("__DATE__ = ")); Serial.println(F(__DATE__)); Serial.print(F("__TIME__ = ")); Serial.println(F(__TIME__)); #ifndef __SAM3X8E__ Serial.print(F("__AVR_LIBC_VERSION_STRING__ = ")); Serial.println(F(__AVR_LIBC_VERSION_STRING__)); #endif Serial.print(F("__FILE__ = ")); Serial.println(F(__FILE__)); Serial.print(F("__STDC__ = ")); Serial.println(__STDC__,DEC); #ifndef __SAM3X8E__ #if !defined (__AVR_ATmega32U4__) Serial.print(F("OSCCAL = ")); Serial.println(OSCCAL,DEC); Serial.print(F("GPIOR0 = 0x")); Serial.println(GPIOR0,HEX); Serial.print(F("GPIOR1 = 0x")); Serial.println(GPIOR1,HEX); Serial.print(F("GPIOR1 = 0x")); Serial.println(GPIOR1,HEX); #endif Serial.print(F("RAMEND = 0x")); Serial.println(RAMEND,HEX); Serial.print(F("XRAMEND = 0x")); Serial.println(XRAMEND,HEX); Serial.print(F("E2END = 0x")); Serial.println(E2END,HEX); Serial.print(F("FLASHEND = 0x")); Serial.println(FLASHEND,HEX); cli(); data1 = boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS); data2 = boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS); data3 = boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS); data4 = boot_lock_fuse_bits_get(GET_LOCK_BITS); sei(); Serial.print(F("LOW FUSE = 0x")); Serial.println(data1,HEX); Serial.print(F("HIGH FUSE = 0x")); Serial.println(data2,HEX); Serial.print(F("EXTENDED FUSE = 0x")); Serial.println(data3,HEX); Serial.print(F("LOCK BITS = 0x")); Serial.println(data4,HEX); Serial.print(F("Processor according to compiler = ")); #if defined (__AVR_ATtiny45__) Serial.println(F("__AVR_ATtiny45__")); #elif defined (__AVR_ATtiny85__) Serial.println(F("__AVR_ATtiny85__")); #elif defined (__AVR_ATtiny2313__) Serial.println(F("__AVR_ATtiny2313__")); #elif defined (__AVR_ATtiny2313A__) Serial.println(F("__AVR_ATtiny2313A__")); #elif defined (__AVR_ATmega48__) Serial.println(F("__AVR_ATmega48__")); #elif defined (__AVR_ATmega48A__) Serial.println(F("__AVR_ATmega48A__")); #elif defined (__AVR_ATmega48P__) Serial.println(F("__AVR_ATmega48P__")); #elif defined (__AVR_ATmega8__) Serial.println(F("__AVR_ATmega8__")); #elif defined (__AVR_ATmega8U2__) Serial.println(F("__AVR_ATmega8U2__")); #elif defined (__AVR_ATmega88__) Serial.println(F("__AVR_ATmega88__")); #elif defined (__AVR_ATmega88A__) Serial.println(F("__AVR_ATmega88A__")); #elif defined (__AVR_ATmega88P__) Serial.println(F("__AVR_ATmega88P__")); #elif defined (__AVR_ATmega88PA__) Serial.println(F("__AVR_ATmega88PA__")); #elif defined (__AVR_ATmega16__) Serial.println(F("__AVR_ATmega16__")); #elif defined (__AVR_ATmega168__) Serial.println(F("__AVR_ATmega168__")); #elif defined (__AVR_ATmega168A__) Serial.println(F("__AVR_ATmega168A__")); #elif defined (__AVR_ATmega168P__) Serial.println(F("__AVR_ATmega168P__")); #elif defined (__AVR_ATmega32__) Serial.println(F("__AVR_ATmega32__")); #elif defined (__AVR_ATmega328__) Serial.println(F("__AVR_ATmega328__")); #elif defined (__AVR_ATmega328P__) Serial.println(F("__AVR_ATmega328P__")); #elif defined (__AVR_ATmega32U2__) Serial.println(F("__AVR_ATmega32U2__")); #elif defined (__AVR_ATmega32U4__) Serial.println(F("__AVR_ATmega32U4__")); #elif defined (__AVR_ATmega32U6__) Serial.println(F("__AVR_ATmega32U6__")); #elif defined (__AVR_ATmega128__) Serial.println(F("__AVR_ATmega128__")); #elif defined (__AVR_ATmega1280__) Serial.println(F("__AVR_ATmega1280__")); #elif defined (__AVR_ATmega2560__) Serial.println(F("__AVR_ATmega2560__")); #endif #endif #ifdef SIGRD Serial.print(F("SIGRD = ")); Serial.println(SIGRD,DEC); #else Serial.println(F("SIGRD : not defined (let's make it 5 and see what happens).")); #define SIGRD 5 #endif #ifndef __SAM3X8E__ Serial.print(F("Signature = 0x")); data1 = boot_signature_byte_get(0x00); data2 = boot_signature_byte_get(0x02); data3 = boot_signature_byte_get(0x04); data4 = boot_signature_byte_get(0x01); Serial.print(data1,HEX); Serial.print(F(", 0x")); Serial.print(data2,HEX); Serial.print(F(", 0x")); Serial.println(data3,HEX); Serial.print(F("calibration = ")); Serial.println(data3,DEC); #endif #if !defined (__AVR_ATmega32U4__) Serial.print(F("Number of seconds since start = ")); Serial.println(millis()/1000L,DEC); #endif #if defined (__AVR_ATmega328P__) Serial.print(F("Internal Temperature = ")); Serial.print(GetTemp(),1); Serial.println(F(" Celsius (the offset could be wrong).")); #endif Serial.println(F("UTF-8 test:")); Serial.println(F(" Micro µ µ µ µ µ µ µ µ µ µ")); Serial.println(F(" Euro € € € € € € € € € €")); Serial.println(F(" (c) © © © © © © © © © ©")); Serial.println(F("-----------")); } #ifndef __SAM3X8E__ #if !defined (__AVR_ATmega32U4__) void TimerRegisterDump(void) { Serial.println(F("Timer Register dump:")); Serial.print(F("TIMER0 TCCR0A = 0x")); Serial.println(TCCR0A,HEX); Serial.print(F("TIMER0 TCCR0B = 0x")); Serial.println(TCCR0B,HEX); Serial.print(F("TIMER0 OCR0A = 0x")); Serial.println(OCR0A,HEX); Serial.print(F("TIMER0 OCR0B = 0x")); Serial.println(OCR0B,HEX); Serial.print(F("TIMER0 TIMSK0 = 0x")); Serial.println(TIMSK0,HEX); Serial.print(F("TIMER0 TCNT0 = 0x")); Serial.println(TCNT0,HEX); Serial.print(F("TIMER0 TIFR0 = 0x")); Serial.println(TIFR0,HEX); Serial.print(F("TIMER1 TCCR1A = 0x")); Serial.println(TCCR1A,HEX); Serial.print(F("TIMER1 TCCR1B = 0x")); Serial.println(TCCR1B,HEX); Serial.print(F("TIMER1 TCCR1C = 0x")); Serial.println(TCCR1C,HEX); Serial.print(F("TIMER1 OCR1A = 0x")); Serial.println(OCR1A,HEX); Serial.print(F("TIMER1 OCR1B = 0x")); Serial.println(OCR1B,HEX); Serial.print(F("TIMER1 TIMSK1 = 0x")); Serial.println(TIMSK1,HEX); Serial.print(F("TIMER1 TCNT1 = 0x")); Serial.println(TCNT1,HEX); Serial.print(F("TIMER1 ICR1 = 0x")); Serial.println(ICR1,HEX); Serial.print(F("TIMER1 TIFR1 = 0x")); Serial.println(TIFR1,HEX); Serial.print(F("TIMER2 TCCR2A = 0x")); Serial.println(TCCR2A,HEX); Serial.print(F("TIMER2 TCCR2B = 0x")); Serial.println(TCCR2B,HEX); Serial.print(F("TIMER2 OCR2A = 0x")); Serial.println(OCR2A,HEX); Serial.print(F("TIMER2 OCR2B = 0x")); Serial.println(OCR2B,HEX); Serial.print(F("TIMER2 TIMSK2 = 0x")); Serial.println(TIMSK2,HEX); Serial.print(F("TIMER2 TCNT2 = 0x")); Serial.println(TCNT2,HEX); Serial.print(F("TIMER2 TIFR2 = 0x")); Serial.println(TIFR2,HEX); Serial.print(F("TIMER2 ASSR = 0x")); Serial.println(ASSR,HEX); Serial.print(F("TIMERn GTCCR = 0x")); Serial.println(GTCCR,HEX); Serial.println(F("-----------")); } #endif #endif #if !defined (__AVR_ATmega32U4__) void i2c_scanner(void) { byte error, address; int nDevices; Serial.println(F("")); Serial.println(F("i2c_scanner")); Serial.println(F("Scanning...")); Wire.begin(); nDevices = 0; for(address = 1; address < 127; address++ ) { // The i2c_scanner uses the return value of // the Write.endTransmisstion to see if // a device did acknowledge to the address. Wire.beginTransmission(address); error = Wire.endTransmission(); if (error == 0) { Serial.print(F("I2C device found at address 0x")); if (address<16) Serial.print(F("0")); Serial.print(address,HEX); Serial.println(F(" !")); nDevices++; } else if (error==4) { Serial.print(F("Unknow error at address 0x")); if (address<16) Serial.print(F("0")); Serial.println(address,HEX); } } if (nDevices == 0) Serial.println(F("No I2C devices found.")); else Serial.println(F("Done.")); Serial.println(F("-----------")); } #endif void SpeedTest(void) { register int i,j; volatile unsigned char c1,c2; volatile int v; volatile long l1,l2; volatile long long ll1,ll2; volatile float f1,f2; volatile double d1,d2; int p,q,r; unsigned long m,n; float d, overhead; char buffer[30]; Serial.println(F("")); Serial.println(F("Speed test")); Serial.println(F("----------")); Serial.print(F("F_CPU = ")); Serial.print(F_CPU,DEC); Serial.println(F(" Hz")); Serial.print(F("1/F_CPU = ")); Serial.print((1000000.0/(float)F_CPU),4); Serial.println(F(" us")); #if !defined (__AVR_ATmega32U4__) Serial.println(F("The next tests are runtime compensated for overhead")); Serial.println(F("Interrupts are still enabled, because millis() is used for timing")); #endif delay(800); // Allow the Serial text to be transmitted Serial.print(F(" nop : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<100; i++) { for (j=0; j<10000; j++) { asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; // in micro seconds // Calculate overhead with 'nop' instruction per loop in microseconds overhead = d - (20.0 * (1000000.0/(float)F_CPU)); d -= overhead; d /= 20.0; // per instruction Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); #ifndef __SAM3X8E__ Serial.print(F(" avr gcc I/O : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<50; i++) { for (j=0; j<10000; j++) { // Use system led PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); PORTB |= _BV(PORTB5); PORTB &= ~_BV(PORTB5); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); #endif Serial.print(F(" Arduino digitalRead : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); digitalRead(13); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" Arduino digitalWrite : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); digitalWrite(13, HIGH); digitalWrite(13, LOW); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" pinMode : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); pinMode(13, INPUT); pinMode(13, OUTPUT); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" multiply byte : ")); c1 = 2; c2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<20; i++) { for (j=0; j<10000; j++) { c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; c1 *= c2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" divide byte : ")); c1 = 253; c2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; c1 /= c2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" add byte : ")); c1 = 1; c2 = 2; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<20; i++) { for (j=0; j<10000; j++) { c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; c1 += c2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); #ifdef __SAM3X8E__ Serial.print(F(" multiply integer (int16_t): ")); volatile int x,y; #else Serial.print(F(" multiply integer : ")); volatile int16_t x,y; #endif x = 2; y = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<10; i++) { for (j=0; j<10000; j++) { x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; x *= y; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); #ifdef __SAM3X8E__ Serial.print(F(" divide integer (int16_t) : ")); #else Serial.print(F(" divide integer : ")); #endif x = 31415; y = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<10000; j++) { x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; x /= y; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); #ifdef __SAM3X8E__ Serial.print(F(" add integer (int16_t) : ")); #else Serial.print(F(" add integer : ")); #endif x = 1; y = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<10; i++) { for (j=0; j<10000; j++) { x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; x += y; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" multiply long : ")); l1 = 2; l2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; l1 *= l2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" divide long : ")); l1 = 2000000000L; l2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<2000; j++) { l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; l1 /= l2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" add long : ")); l1 = 500000000L; l2 = 123; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<4; i++) { for (j=0; j<10000; j++) { l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; l1 += l2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" multiply long long : ")); ll1 = 2; ll2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; ll1 *= ll2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" divide long long : ")); ll1 = 2000000000L; ll2 = 3; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<2000; j++) { ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; ll1 /= ll2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" add long long : ")); ll1 = 500000000L; ll2 = 123; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<4; i++) { for (j=0; j<10000; j++) { ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; ll1 += ll2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" multiply float : ")); f1 = 3.24; f2 = 1.25; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; f1 *= f2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" divide float : ")); f1 = 312645.24; f2 = 1.21; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<2000; j++) { f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; f1 /= f2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" add float : ")); f1 = 9876.54; f2 = 1.23; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<10000; j++) { f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; f1 += f2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" multiply double : ")); d1 = 3.24; d2 = 1.25; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<10000; j++) { d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; d1 *= d2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" divide double : ")); d1 = 312645.24; d2 = 1.21; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<2000; j++) { d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; d1 /= d2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" add double : ")); d1 = 9876.54; d2 = 1.23; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<10000; j++) { d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; d1 += d2; } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" itoa() : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<10000; j++) { itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); itoa(i,buffer,10); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); long int l = 314159L; Serial.print(F(" ltoa() : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<1; i++) { for (j=0; j<500; j++) { ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); ltoa(l,buffer,10); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" dtostrf() : ")); float d3; d3 = 3.14159265; delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<1000; j++) { dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); dtostrf (d3, 6, 2, buffer); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print(F(" random() : ")); delay(70); // Allow the Serial text to be transmitted m=millis(); for (i=0; i<2; i++) { for (j=0; j<1000; j++) { r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); r=random(j); } } n=millis(); d = ((float)n - (float)m) / ((float)i * (float)j); d *= 1000.0; d -= overhead; d /= 20.0; Serial.print (d,3); Serial.println (F(" us")); Serial.print ("\n"); Serial.print(F(" y |= (1<
Result of MEGA2560 ``` Speed test ---------- F_CPU = 16000000 Hz 1/F_CPU = 0.0625 us The next tests are runtime compensated for overhead Interrupts are still enabled, because millis() is used for timing nop : 0.063 us avr gcc I/O : 0.125 us Arduino digitalRead : 6.162 us Arduino digitalWrite : 7.202 us pinMode : 4.345 us multiply byte : 1.387 us divide byte : 6.290 us add byte : 1.323 us multiply integer : 2.141 us divide integer : 15.217 us add integer : 1.638 us multiply long : 7.107 us divide long : 39.612 us add long : 2.517 us multiply long long : 23.337 us divide long long : 19.987 us add long long : 4.153 us multiply float : 7.737 us divide float : 83.462 us add float : 9.602 us multiply double : 7.740 us divide double : 83.462 us add double : 9.607 us itoa() : 12.957 us ltoa() : 126.087 us dtostrf() : 80.937 us random() : 95.037 us y |= (1<
Result of Due ``` Speed test ---------- F_CPU = 84000000 Hz 1/F_CPU = 0.0119 us The next tests are runtime compensated for overhead Interrupts are still enabled, because millis() is used for timing nop : 0.012 us Arduino digitalRead : 0.398 us Arduino digitalWrite : 2.201 us pinMode : 3.221 us multiply byte : 0.115 us divide byte : 0.136 us add byte : 0.103 us multiply integer (int16_t): 0.080 us divide integer (int16_t) : 0.093 us add integer (int16_t) : 0.082 us multiply long : 0.081 us divide long : 0.068 us add long : 0.081 us multiply long long : 0.233 us divide long long : 2.443 us add long long : 0.170 us multiply float : 0.818 us divide float : 5.193 us add float : 1.148 us multiply double : 1.143 us divide double : 19.068 us add double : 1.498 us itoa() : 1.508 us ltoa() : 3.193 us dtostrf() : 94.743 us random() : 1.093 us y |= (1<

In case of MEGA2560, calculation of long is x 1.99 ~ x 4.58 slower than calculation of int.

Macgyver001 commented 7 years ago

# Really great all that hard work. I will try LIN_ADVANCE part2:

#if ENABLED(LIN_ADVANCE)
-   volatile int Stepper::e_steps[E_STEPPERS];
+   volatile long Stepper::e_steps[E_STEPPERS];

and

About inverted stepper signal: It seems that it's simple bug. In advance_isr(),

    #define START_E_PULSE(INDEX) \
-      if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)
+      if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)

    #define STOP_E_PULSE(INDEX) \
      if (e_steps[INDEX]) { \
        e_steps[INDEX] <= 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
-        E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
+        E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \

To see if that's working more stable ( without the : MINIMUM_STEPPER_PULSE = 0 )

thinkyhead commented 7 years ago

4852 is merged. Please confirm that it fixes the original issue.

To see if that's working more stable ( without the : MINIMUM_STEPPER_PULSE = 0 )

I finally tried MINIMUM_STEPPER_PULSE recently (in general) and it made the steppers sluggish. But in my case the machine has 100:1 harmonic gears on some axes, so probably it just can't afford any extra delay.

thinkyhead commented 7 years ago

This is benchmark program

That is some very useful info. Perhaps it can be timed with all interrupts (temporarily) disabled, using TCNT0 (or another hardware counter) instead of millis to get completely accurate values.

Sebastianv650 commented 7 years ago

Great research!! I'm realy sad I still have no time to contribute in this topic (even my printer wasn't running the last months) but I definitly must so some tests with the merged PR :)

Thanks to everyone here :+1:

Macgyver001 commented 7 years ago

@thinkyhead is #4852 already landed/merged in the RCBugFix branch? I can't find it back in the stepper.cpp file?

ghost commented 7 years ago

PR #4852 (Fix for advance extrusion algorithms) was merged to RCBugFix branch.