Open rose-jinyang opened 3 years ago
I see you are still using the “dense_4_Softmax_blob” as the output blob, which is a bug fixed in the newer version (The version I mentioned before). I try to insert the result from the model, and get same but slightly different result from yours. All the weight and activation type are correct. Maybe there is still bug in the converter, or your model is very sensitive to noise. One thing that prevent the model from debugging is that, the model is arranged using nested sequential, which the debugger current is not able to support. Is that possible to rewrite the model into a flatten one (you can load the model's weight by name after you rewrite the code)?
Hi I send the new Keras model and the converted NCNN model, and test images. https://we.tl/t-7TqG0RQkK2 This model's input is a full image rather than a cropped face image. The results from the Keras model are the following.
Testing for a real image ... Score: 0.99825186 Score: 0.9731082 Score: 0.8465639 Score: 0.9993874 Score: 0.99937063
Testing for a fake image ... Score: 1.8224884e-05 Score: 0.00020766616 Score: 0.00014449844 Score: 6.4237774e-06 Score: 3.9179995e-06 Score: 0.0070014773 Score: 0.00067165506 Score: 9.1213835e-05
This keras model works well. A real image score > 0.5 A fake image score < 0.5
But the results from "dense_4_blob" of the converted NCNN model are the following: Testing for a real image ... score: 0.042266846 score: 0.030639648 score: 0.014801025 score: 0.010948181 score: 0.006668091
Testing for a fake image ... score: 0.0049209595 score: 0.015686035 score: 0.012001038 score: 0.010871887 score: 0.041748047 score: 0.0099105835 score: 0.012832642 score: 0.00844574
So I can NOT separate the real images and the fake images. For flattening of a nested Keras model, please check these blogs. https://stackoverflow.com/questions/54648296/how-to-flatten-a-nested-model-keras-functional-api/54648506 https://stackoverflow.com/questions/58114504/keras-nested-models-save-and-load-weights-separately-or-view-summary-of-all-nest
Fixed in 34d81db, you can try the newest version.
thanks
But the results from the new converted NCNN model are the following. it seems that there is an issue yet.
Testing for a real image ... score: 0.013702393 score: 0.77490234 score: 0.056793213 score: 0.04916382 score: 0.25073242
Testing for a fake image ... score: 0.027145386 score: 0.63378906 score: 0.546875 score: 0.44726562 score: 0.11468506 score: 0.85839844 score: 0.2734375 score: 0.06060791
Hi It seems that there is an issue in my Python script for NCNN model, exactly, in loading an image data on NCNN engine.
Something I just cannot understand is that, if I injected random data, I got the same result, but if I extract the input of the ncnn, and put it into the keras (vice versa), I got something different. I am not sure is there something weird in your model, or there is some implementation issue in ncnn ( or error in the conversion).
input_1
==================================
Layer Name: conv1_pad, Layer Shape: keras->(1, 225, 225, 3) ncnn->(3, 225, 225)
Max: keras->1.000 ncnn->1.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.496 ncnn->0.496 Var: keras->0.291 ncnn->0.291
Cosine Similarity: 0.00000
Keras Feature Map: [0.621 0.303 0.716 0.019 0.306 0.179 0.047 0.899 0.189 0.825]
Ncnn Feature Map: [0.621 0.303 0.716 0.019 0.306 0.179 0.047 0.899 0.189 0.825]
==================================
Layer Name: conv1, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->2.259 ncnn->2.259 Min: keras->-2.456 ncnn->-2.456
Mean: keras->-0.065 ncnn->-0.065 Var: keras->0.509 ncnn->0.509
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv1_bn, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->25.992 ncnn->25.992 Min: keras->-21.338 ncnn->-21.338
Mean: keras->1.334 ncnn->1.334 Var: keras->2.430 ncnn->2.430
Cosine Similarity: 0.00000
Keras Feature Map: [-0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459]
Ncnn Feature Map: [-0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459 -0.459]
conv1_relu_Clip
==================================
Layer Name: conv1_relu, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.663 ncnn->1.663 Var: keras->1.609 ncnn->1.609
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_1, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->161.156 ncnn->161.156 Min: keras->-129.740 ncnn->-129.740
Mean: keras->1.124 ncnn->1.124 Var: keras->17.405 ncnn->17.405
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_1_bn, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->47.170 ncnn->47.170 Min: keras->-43.673 ncnn->-43.673
Mean: keras->1.502 ncnn->1.502 Var: keras->4.015 ncnn->4.015
Cosine Similarity: 0.00000
Keras Feature Map: [-0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455]
Ncnn Feature Map: [-0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455 -0.455]
conv_dw_1_relu_Clip
==================================
Layer Name: conv_dw_1_relu, Layer Shape: keras->(1, 112, 112, 32) ncnn->(32, 112, 112)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.770 ncnn->1.770 Var: keras->2.113 ncnn->2.113
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_pw_1, Layer Shape: keras->(1, 112, 112, 64) ncnn->(64, 112, 112)
Max: keras->17.378 ncnn->17.378 Min: keras->-15.308 ncnn->-15.308
Mean: keras->0.298 ncnn->0.298 Var: keras->3.644 ncnn->3.644
Cosine Similarity: 0.00000
Keras Feature Map: [ 1.125 -0.298 1.059 0.712 0.414 0.573 0.39 -0.259 0.797 1.784]
Ncnn Feature Map: [ 1.125 -0.298 1.059 0.712 0.414 0.573 0.39 -0.259 0.797 1.784]
==================================
Layer Name: conv_pw_1_bn, Layer Shape: keras->(1, 112, 112, 64) ncnn->(64, 112, 112)
Max: keras->48.888 ncnn->48.888 Min: keras->-43.727 ncnn->-43.727
Mean: keras->1.161 ncnn->1.161 Var: keras->5.175 ncnn->5.175
Cosine Similarity: 0.00000
Keras Feature Map: [-3.762 -9.756 -4.041 -5.503 -6.756 -6.088 -6.859 -9.593 -5.145 -0.988]
Ncnn Feature Map: [-3.762 -9.756 -4.041 -5.503 -6.756 -6.088 -6.859 -9.593 -5.145 -0.988]
conv_pw_1_relu_Clip
==================================
Layer Name: conv_pw_1_relu, Layer Shape: keras->(1, 112, 112, 64) ncnn->(64, 112, 112)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.925 ncnn->1.925 Var: keras->1.852 ncnn->1.852
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_pad_2, Layer Shape: keras->(1, 113, 113, 64) ncnn->(64, 113, 113)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.891 ncnn->1.891 Var: keras->1.853 ncnn->1.853
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_2, Layer Shape: keras->(1, 56, 56, 64) ncnn->(64, 56, 56)
Max: keras->72.963 ncnn->72.963 Min: keras->-68.227 ncnn->-68.227
Mean: keras->-3.552 ncnn->-3.552 Var: keras->17.202 ncnn->17.202
Cosine Similarity: 0.00000
Keras Feature Map: [-20.354 -26.548 -17.365 -23.186 -17.634 -22.605 -14.614 -31.992 -12.047
-23.472]
Ncnn Feature Map: [-20.354 -26.548 -17.365 -23.186 -17.634 -22.605 -14.614 -31.992 -12.047
-23.472]
==================================
Layer Name: conv_dw_2_bn, Layer Shape: keras->(1, 56, 56, 64) ncnn->(64, 56, 56)
Max: keras->31.469 ncnn->31.469 Min: keras->-27.352 ncnn->-27.352
Mean: keras->1.226 ncnn->1.226 Var: keras->2.940 ncnn->2.940
Cosine Similarity: 0.00000
Keras Feature Map: [-0.123 -0.716 0.164 -0.394 0.138 -0.338 0.427 -1.238 0.673 -0.421]
Ncnn Feature Map: [-0.123 -0.716 0.164 -0.394 0.138 -0.338 0.427 -1.238 0.673 -0.421]
conv_dw_2_relu_Clip
==================================
Layer Name: conv_dw_2_relu, Layer Shape: keras->(1, 56, 56, 64) ncnn->(64, 56, 56)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.745 ncnn->1.745 Var: keras->1.644 ncnn->1.644
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0.164 0. 0.138 0. 0.427 0. 0.673 0. ]
Ncnn Feature Map: [0. 0. 0.164 0. 0.138 0. 0.427 0. 0.673 0. ]
==================================
Layer Name: conv_pw_2, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->14.726 ncnn->14.726 Min: keras->-11.284 ncnn->-11.284
Mean: keras->0.063 ncnn->0.063 Var: keras->2.705 ncnn->2.705
Cosine Similarity: 0.00000
Keras Feature Map: [-5.647 -5.899 -4.537 -2.833 -3.53 -4.64 -4.171 -6.195 -5.835 -5.427]
Ncnn Feature Map: [-5.647 -5.899 -4.537 -2.833 -3.53 -4.64 -4.171 -6.195 -5.835 -5.427]
==================================
Layer Name: conv_pw_2_bn, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->26.681 ncnn->26.681 Min: keras->-19.834 ncnn->-19.834
Mean: keras->0.627 ncnn->0.627 Var: keras->3.404 ncnn->3.404
Cosine Similarity: 0.00000
Keras Feature Map: [2.394 2.192 3.282 4.646 4.088 3.199 3.575 1.954 2.243 2.57 ]
Ncnn Feature Map: [2.394 2.192 3.282 4.646 4.088 3.199 3.575 1.954 2.243 2.57 ]
conv_pw_2_relu_Clip
==================================
Layer Name: conv_pw_2_relu, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.667 ncnn->1.667 Var: keras->1.714 ncnn->1.714
Cosine Similarity: 0.00000
Keras Feature Map: [2.394 2.192 3.282 4.646 4.088 3.199 3.575 1.954 2.243 2.57 ]
Ncnn Feature Map: [2.394 2.192 3.282 4.646 4.088 3.199 3.575 1.954 2.243 2.57 ]
==================================
Layer Name: conv_dw_3, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->63.226 ncnn->63.226 Min: keras->-65.182 ncnn->-65.182
Mean: keras->0.169 ncnn->0.169 Var: keras->8.967 ncnn->8.967
Cosine Similarity: 0.00000
Keras Feature Map: [-16.161 -8.931 -8.482 -24.194 -22.865 -23.837 -24.515 -10.245 -9.495
-9.133]
Ncnn Feature Map: [-16.161 -8.931 -8.482 -24.194 -22.865 -23.837 -24.515 -10.245 -9.495
-9.133]
==================================
Layer Name: conv_dw_3_bn, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->36.687 ncnn->36.687 Min: keras->-55.052 ncnn->-55.052
Mean: keras->0.963 ncnn->0.963 Var: keras->3.022 ncnn->3.022
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.737 2.147 2.235 -0.83 -0.571 -0.761 -0.893 1.891 2.037 2.108]
Ncnn Feature Map: [ 0.737 2.147 2.235 -0.83 -0.571 -0.761 -0.893 1.891 2.037 2.108]
conv_dw_3_relu_Clip
==================================
Layer Name: conv_dw_3_relu, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.555 ncnn->1.555 Var: keras->1.833 ncnn->1.833
Cosine Similarity: 0.00000
Keras Feature Map: [0.737 2.147 2.235 0. 0. 0. 0. 1.891 2.037 2.108]
Ncnn Feature Map: [0.737 2.147 2.235 0. 0. 0. 0. 1.891 2.037 2.108]
==================================
Layer Name: conv_pw_3, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->12.929 ncnn->12.929 Min: keras->-12.785 ncnn->-12.785
Mean: keras->0.351 ncnn->0.351 Var: keras->2.915 ncnn->2.915
Cosine Similarity: 0.00000
Keras Feature Map: [ 1.031 -1.02 -0.233 -1.57 -1.378 -2.568 0.243 -0.87 -1.267 -0.691]
Ncnn Feature Map: [ 1.031 -1.02 -0.233 -1.57 -1.378 -2.568 0.243 -0.87 -1.267 -0.691]
==================================
Layer Name: conv_pw_3_bn, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->44.460 ncnn->44.460 Min: keras->-17.024 ncnn->-17.024
Mean: keras->0.217 ncnn->0.217 Var: keras->3.194 ncnn->3.194
Cosine Similarity: 0.00000
Keras Feature Map: [ 3.414 1.212 2.057 0.622 0.828 -0.449 2.568 1.373 0.948 1.565]
Ncnn Feature Map: [ 3.414 1.212 2.057 0.622 0.828 -0.449 2.568 1.373 0.948 1.565]
conv_pw_3_relu_Clip
==================================
Layer Name: conv_pw_3_relu, Layer Shape: keras->(1, 56, 56, 128) ncnn->(128, 56, 56)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.140 ncnn->1.140 Var: keras->1.607 ncnn->1.607
Cosine Similarity: 0.00000
Keras Feature Map: [3.414 1.212 2.057 0.622 0.828 0. 2.568 1.373 0.948 1.565]
Ncnn Feature Map: [3.414 1.212 2.057 0.622 0.828 0. 2.568 1.373 0.948 1.565]
==================================
Layer Name: conv_pad_4, Layer Shape: keras->(1, 57, 57, 128) ncnn->(128, 57, 57)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.100 ncnn->1.100 Var: keras->1.593 ncnn->1.593
Cosine Similarity: 0.00000
Keras Feature Map: [3.414 1.212 2.057 0.622 0.828 0. 2.568 1.373 0.948 1.565]
Ncnn Feature Map: [3.414 1.212 2.057 0.622 0.828 0. 2.568 1.373 0.948 1.565]
==================================
Layer Name: conv_dw_4, Layer Shape: keras->(1, 28, 28, 128) ncnn->(128, 28, 28)
Max: keras->51.246 ncnn->51.246 Min: keras->-61.562 ncnn->-61.562
Mean: keras->-2.560 ncnn->-2.560 Var: keras->14.385 ncnn->14.385
Cosine Similarity: 0.00000
Keras Feature Map: [-11.011 -11.383 -16.514 -10.125 -14.622 -13.594 -6.4 -13.466 -21.025
-15.856]
Ncnn Feature Map: [-11.011 -11.383 -16.514 -10.125 -14.622 -13.594 -6.4 -13.466 -21.025
-15.856]
==================================
Layer Name: conv_dw_4_bn, Layer Shape: keras->(1, 28, 28, 128) ncnn->(128, 28, 28)
Max: keras->8.996 ncnn->8.996 Min: keras->-8.907 ncnn->-8.907
Mean: keras->1.084 ncnn->1.084 Var: keras->1.991 ncnn->1.991
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.654 0.574 -0.521 0.843 -0.117 0.102 1.638 0.129 -1.484 -0.381]
Ncnn Feature Map: [ 0.654 0.574 -0.521 0.843 -0.117 0.102 1.638 0.129 -1.484 -0.381]
conv_dw_4_relu_Clip
==================================
Layer Name: conv_dw_4_relu, Layer Shape: keras->(1, 28, 28, 128) ncnn->(128, 28, 28)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.393 ncnn->1.393 Var: keras->1.468 ncnn->1.468
Cosine Similarity: 0.00000
Keras Feature Map: [0.654 0.574 0. 0.843 0. 0.102 1.638 0.129 0. 0. ]
Ncnn Feature Map: [0.654 0.574 0. 0.843 0. 0.102 1.638 0.129 0. 0. ]
==================================
Layer Name: conv_pw_4, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->12.401 ncnn->12.401 Min: keras->-5.852 ncnn->-5.852
Mean: keras->0.055 ncnn->0.055 Var: keras->2.072 ncnn->2.072
Cosine Similarity: 0.00000
Keras Feature Map: [-2.877 -1.833 -2.025 -2.158 -1.653 -1.671 -1.343 -1.352 -2.798 -2.374]
Ncnn Feature Map: [-2.877 -1.833 -2.025 -2.158 -1.653 -1.671 -1.343 -1.352 -2.798 -2.374]
==================================
Layer Name: conv_pw_4_bn, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->14.259 ncnn->14.259 Min: keras->-9.096 ncnn->-9.096
Mean: keras->1.491 ncnn->1.491 Var: keras->1.801 ncnn->1.801
Cosine Similarity: 0.00000
Keras Feature Map: [0.688 1.675 1.494 1.367 1.845 1.828 2.138 2.13 0.763 1.164]
Ncnn Feature Map: [0.688 1.675 1.494 1.367 1.845 1.828 2.138 2.13 0.763 1.164]
conv_pw_4_relu_Clip
==================================
Layer Name: conv_pw_4_relu, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.702 ncnn->1.702 Var: keras->1.334 ncnn->1.334
Cosine Similarity: 0.00000
Keras Feature Map: [0.688 1.675 1.494 1.367 1.845 1.828 2.138 2.13 0.763 1.164]
Ncnn Feature Map: [0.688 1.675 1.494 1.367 1.845 1.828 2.138 2.13 0.763 1.164]
==================================
Layer Name: conv_dw_5, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->28.762 ncnn->28.762 Min: keras->-33.721 ncnn->-33.721
Mean: keras->-0.953 ncnn->-0.953 Var: keras->6.296 ncnn->6.296
Cosine Similarity: 0.00000
Keras Feature Map: [0.781 4.051 4.269 3.761 5.899 6.315 7.254 7.123 1.183 1.809]
Ncnn Feature Map: [0.781 4.051 4.269 3.761 5.899 6.315 7.254 7.123 1.183 1.809]
==================================
Layer Name: conv_dw_5_bn, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->11.740 ncnn->11.740 Min: keras->-15.231 ncnn->-15.231
Mean: keras->0.191 ncnn->0.191 Var: keras->1.602 ncnn->1.602
Cosine Similarity: 0.00000
Keras Feature Map: [-1.159 0.685 0.808 0.521 1.728 1.962 2.492 2.418 -0.933 -0.58 ]
Ncnn Feature Map: [-1.159 0.685 0.808 0.521 1.728 1.962 2.492 2.418 -0.933 -0.58 ]
conv_dw_5_relu_Clip
==================================
Layer Name: conv_dw_5_relu, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.700 ncnn->0.700 Var: keras->0.996 ncnn->0.996
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0.685 0.808 0.521 1.728 1.962 2.492 2.418 0. 0. ]
Ncnn Feature Map: [0. 0.685 0.808 0.521 1.728 1.962 2.492 2.418 0. 0. ]
==================================
Layer Name: conv_pw_5, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->10.821 ncnn->10.821 Min: keras->-6.399 ncnn->-6.399
Mean: keras->0.127 ncnn->0.127 Var: keras->1.395 ncnn->1.395
Cosine Similarity: 0.00000
Keras Feature Map: [-1.871 -1.847 -1.886 -2.661 -3.006 -2.186 -2.248 -2.336 -2.65 -2.901]
Ncnn Feature Map: [-1.871 -1.847 -1.886 -2.661 -3.006 -2.186 -2.248 -2.336 -2.65 -2.901]
==================================
Layer Name: conv_pw_5_bn, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->12.228 ncnn->12.228 Min: keras->-9.135 ncnn->-9.135
Mean: keras->0.044 ncnn->0.044 Var: keras->1.750 ncnn->1.750
Cosine Similarity: 0.00000
Keras Feature Map: [-0.894 -0.852 -0.921 -2.298 -2.909 -1.453 -1.564 -1.72 -2.277 -2.723]
Ncnn Feature Map: [-0.894 -0.852 -0.921 -2.298 -2.909 -1.453 -1.564 -1.72 -2.277 -2.723]
conv_pw_5_relu_Clip
==================================
Layer Name: conv_pw_5_relu, Layer Shape: keras->(1, 28, 28, 256) ncnn->(256, 28, 28)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.720 ncnn->0.720 Var: keras->1.011 ncnn->1.011
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_pad_6, Layer Shape: keras->(1, 29, 29, 256) ncnn->(256, 29, 29)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.671 ncnn->0.671 Var: keras->0.993 ncnn->0.993
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_6, Layer Shape: keras->(1, 14, 14, 256) ncnn->(256, 14, 14)
Max: keras->40.524 ncnn->40.524 Min: keras->-37.278 ncnn->-37.278
Mean: keras->-1.205 ncnn->-1.205 Var: keras->7.478 ncnn->7.478
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_6_bn, Layer Shape: keras->(1, 14, 14, 256) ncnn->(256, 14, 14)
Max: keras->8.268 ncnn->8.268 Min: keras->-15.184 ncnn->-15.184
Mean: keras->1.053 ncnn->1.053 Var: keras->1.799 ncnn->1.799
Cosine Similarity: 0.00000
Keras Feature Map: [0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014]
Ncnn Feature Map: [0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014]
conv_dw_6_relu_Clip
==================================
Layer Name: conv_dw_6_relu, Layer Shape: keras->(1, 14, 14, 256) ncnn->(256, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.267 ncnn->1.267 Var: keras->1.332 ncnn->1.332
Cosine Similarity: 0.00000
Keras Feature Map: [0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014]
Ncnn Feature Map: [0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014]
==================================
Layer Name: conv_pw_6, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->7.966 ncnn->7.966 Min: keras->-7.162 ncnn->-7.162
Mean: keras->-0.305 ncnn->-0.305 Var: keras->1.952 ncnn->1.952
Cosine Similarity: 0.00000
Keras Feature Map: [-1.273 -1.487 -1.202 -1.519 -1.366 -1.764 -1.667 -1.501 -1.49 -1.614]
Ncnn Feature Map: [-1.273 -1.487 -1.202 -1.519 -1.366 -1.764 -1.667 -1.501 -1.49 -1.614]
==================================
Layer Name: conv_pw_6_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->8.043 ncnn->8.043 Min: keras->-7.961 ncnn->-7.961
Mean: keras->0.777 ncnn->0.777 Var: keras->1.723 ncnn->1.723
Cosine Similarity: 0.00000
Keras Feature Map: [-0.638 -0.966 -0.529 -1.016 -0.78 -1.392 -1.243 -0.988 -0.971 -1.161]
Ncnn Feature Map: [-0.638 -0.966 -0.529 -1.016 -0.78 -1.392 -1.243 -0.988 -0.971 -1.161]
conv_pw_6_relu_Clip
==================================
Layer Name: conv_pw_6_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.127 ncnn->1.127 Var: keras->1.209 ncnn->1.209
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_7, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->23.925 ncnn->23.925 Min: keras->-30.512 ncnn->-30.512
Mean: keras->-0.048 ncnn->-0.048 Var: keras->3.538 ncnn->3.538
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_7_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->10.783 ncnn->10.783 Min: keras->-16.061 ncnn->-16.061
Mean: keras->-0.036 ncnn->-0.036 Var: keras->1.667 ncnn->1.667
Cosine Similarity: 0.00000
Keras Feature Map: [0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118]
Ncnn Feature Map: [0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118]
conv_dw_7_relu_Clip
==================================
Layer Name: conv_dw_7_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.561 ncnn->0.561 Var: keras->0.927 ncnn->0.927
Cosine Similarity: 0.00000
Keras Feature Map: [0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118]
Ncnn Feature Map: [0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118]
==================================
Layer Name: conv_pw_7, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->8.444 ncnn->8.444 Min: keras->-7.052 ncnn->-7.052
Mean: keras->-0.024 ncnn->-0.024 Var: keras->1.322 ncnn->1.322
Cosine Similarity: 0.00000
Keras Feature Map: [-2.028 -1.261 -1.252 -1.324 -1.662 -0.512 -0.476 -1.346 -1.265 -1.603]
Ncnn Feature Map: [-2.028 -1.261 -1.252 -1.324 -1.662 -0.512 -0.476 -1.346 -1.265 -1.603]
==================================
Layer Name: conv_pw_7_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->9.823 ncnn->9.823 Min: keras->-6.619 ncnn->-6.619
Mean: keras->0.577 ncnn->0.577 Var: keras->1.164 ncnn->1.164
Cosine Similarity: 0.00000
Keras Feature Map: [-1.241 -0.103 -0.09 -0.197 -0.698 1.008 1.062 -0.229 -0.109 -0.612]
Ncnn Feature Map: [-1.241 -0.103 -0.09 -0.197 -0.698 1.008 1.062 -0.229 -0.109 -0.612]
conv_pw_7_relu_Clip
==================================
Layer Name: conv_pw_7_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.812 ncnn->0.812 Var: keras->0.837 ncnn->0.837
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 1.008 1.062 0. 0. 0. ]
Ncnn Feature Map: [0. 0. 0. 0. 0. 1.008 1.062 0. 0. 0. ]
==================================
Layer Name: conv_dw_8, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->32.091 ncnn->32.091 Min: keras->-18.561 ncnn->-18.561
Mean: keras->0.206 ncnn->0.206 Var: keras->3.786 ncnn->3.786
Cosine Similarity: 0.00000
Keras Feature Map: [ 0. 0. -0.078 -0.26 0.361 2.74 1.899 -1.538 -0.87 -0.367]
Ncnn Feature Map: [ 0. 0. -0.078 -0.26 0.361 2.74 1.899 -1.538 -0.87 -0.367]
==================================
Layer Name: conv_dw_8_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->7.537 ncnn->7.537 Min: keras->-13.371 ncnn->-13.371
Mean: keras->0.250 ncnn->0.250 Var: keras->1.434 ncnn->1.434
Cosine Similarity: 0.00000
Keras Feature Map: [-0.567 -0.567 -0.607 -0.698 -0.386 0.808 0.386 -1.339 -1.004 -0.752]
Ncnn Feature Map: [-0.567 -0.567 -0.607 -0.698 -0.386 0.808 0.386 -1.339 -1.004 -0.752]
conv_dw_8_relu_Clip
==================================
Layer Name: conv_dw_8_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.695 ncnn->0.695 Var: keras->0.922 ncnn->0.922
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0.808 0.386 0. 0. 0. ]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0.808 0.386 0. 0. 0. ]
==================================
Layer Name: conv_pw_8, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->7.476 ncnn->7.476 Min: keras->-5.423 ncnn->-5.423
Mean: keras->-0.212 ncnn->-0.212 Var: keras->1.254 ncnn->1.254
Cosine Similarity: 0.00000
Keras Feature Map: [-1.336 -0.22 0.298 0.657 0.705 0.751 0.545 0.601 0.622 0.584]
Ncnn Feature Map: [-1.336 -0.22 0.298 0.657 0.705 0.751 0.545 0.601 0.622 0.584]
==================================
Layer Name: conv_pw_8_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.369 ncnn->6.369 Min: keras->-7.981 ncnn->-7.981
Mean: keras->0.275 ncnn->0.275 Var: keras->1.312 ncnn->1.312
Cosine Similarity: 0.00000
Keras Feature Map: [-1.916 -0.185 0.62 1.178 1.253 1.324 1.003 1.091 1.124 1.064]
Ncnn Feature Map: [-1.916 -0.185 0.62 1.178 1.253 1.324 1.003 1.091 1.124 1.064]
conv_pw_8_relu_Clip
==================================
Layer Name: conv_pw_8_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.683 ncnn->0.683 Var: keras->0.802 ncnn->0.802
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0.62 1.178 1.253 1.324 1.003 1.091 1.124 1.064]
Ncnn Feature Map: [0. 0. 0.62 1.178 1.253 1.324 1.003 1.091 1.124 1.064]
==================================
Layer Name: conv_dw_9, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->20.375 ncnn->20.375 Min: keras->-19.968 ncnn->-19.968
Mean: keras->0.372 ncnn->0.372 Var: keras->3.452 ncnn->3.452
Cosine Similarity: 0.00000
Keras Feature Map: [ 0. -0.193 -1.321 -2.19 -1.536 -2.054 -2.016 -2.328 -2.045 -1.691]
Ncnn Feature Map: [ 0. -0.193 -1.321 -2.19 -1.536 -2.054 -2.016 -2.328 -2.045 -1.691]
==================================
Layer Name: conv_dw_9_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->8.764 ncnn->8.764 Min: keras->-10.032 ncnn->-10.032
Mean: keras->0.386 ncnn->0.386 Var: keras->1.366 ncnn->1.366
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.889 0.706 -0.369 -1.198 -0.575 -1.068 -1.032 -1.329 -1.06 -0.722]
Ncnn Feature Map: [ 0.889 0.706 -0.369 -1.198 -0.575 -1.068 -1.032 -1.329 -1.06 -0.722]
conv_dw_9_relu_Clip
==================================
Layer Name: conv_dw_9_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.754 ncnn->0.754 Var: keras->0.934 ncnn->0.934
Cosine Similarity: 0.00000
Keras Feature Map: [0.889 0.706 0. 0. 0. 0. 0. 0. 0. 0. ]
Ncnn Feature Map: [0.889 0.706 0. 0. 0. 0. 0. 0. 0. 0. ]
==================================
Layer Name: conv_pw_9, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->7.063 ncnn->7.063 Min: keras->-5.465 ncnn->-5.465
Mean: keras->0.129 ncnn->0.129 Var: keras->1.206 ncnn->1.206
Cosine Similarity: 0.00000
Keras Feature Map: [-0.944 -2.516 -1.888 -1.46 -1.339 -1.042 -1.133 -1.092 -1.431 -1.307]
Ncnn Feature Map: [-0.944 -2.516 -1.888 -1.46 -1.339 -1.042 -1.133 -1.092 -1.431 -1.307]
==================================
Layer Name: conv_pw_9_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->9.220 ncnn->9.220 Min: keras->-10.323 ncnn->-10.323
Mean: keras->0.201 ncnn->0.201 Var: keras->1.430 ncnn->1.430
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.284 -2.606 -1.451 -0.664 -0.442 0.104 -0.063 0.012 -0.611 -0.382]
Ncnn Feature Map: [ 0.284 -2.606 -1.451 -0.664 -0.442 0.104 -0.063 0.012 -0.611 -0.382]
conv_pw_9_relu_Clip
==================================
Layer Name: conv_pw_9_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.678 ncnn->0.678 Var: keras->0.861 ncnn->0.861
Cosine Similarity: 0.00000
Keras Feature Map: [0.284 0. 0. 0. 0. 0.104 0. 0.012 0. 0. ]
Ncnn Feature Map: [0.284 0. 0. 0. 0. 0.104 0. 0.012 0. 0. ]
==================================
Layer Name: conv_dw_10, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->24.577 ncnn->24.577 Min: keras->-34.369 ncnn->-34.369
Mean: keras->-0.182 ncnn->-0.182 Var: keras->3.272 ncnn->3.272
Cosine Similarity: 0.00000
Keras Feature Map: [-0.489 -0.592 -0.126 -0.357 -0.441 -0.296 -0.076 -0.141 -0.217 -0.561]
Ncnn Feature Map: [-0.489 -0.592 -0.126 -0.357 -0.441 -0.296 -0.076 -0.141 -0.217 -0.561]
==================================
Layer Name: conv_dw_10_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->11.413 ncnn->11.413 Min: keras->-10.399 ncnn->-10.399
Mean: keras->0.455 ncnn->0.455 Var: keras->1.538 ncnn->1.538
Cosine Similarity: 0.00000
Keras Feature Map: [1.159 1.123 1.284 1.204 1.175 1.225 1.301 1.279 1.252 1.134]
Ncnn Feature Map: [1.159 1.123 1.284 1.204 1.175 1.225 1.301 1.279 1.252 1.134]
conv_dw_10_relu_Clip
==================================
Layer Name: conv_dw_10_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.863 ncnn->0.863 Var: keras->1.044 ncnn->1.044
Cosine Similarity: 0.00000
Keras Feature Map: [1.159 1.123 1.284 1.204 1.175 1.225 1.301 1.279 1.252 1.134]
Ncnn Feature Map: [1.159 1.123 1.284 1.204 1.175 1.225 1.301 1.279 1.252 1.134]
==================================
Layer Name: conv_pw_10, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->8.295 ncnn->8.295 Min: keras->-6.005 ncnn->-6.005
Mean: keras->0.363 ncnn->0.363 Var: keras->1.590 ncnn->1.590
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.586 1.352 1.112 0.742 0.921 0.312 0.335 0.594 0.487 -0.085]
Ncnn Feature Map: [ 0.586 1.352 1.112 0.742 0.921 0.312 0.335 0.594 0.487 -0.085]
==================================
Layer Name: conv_pw_10_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->8.924 ncnn->8.924 Min: keras->-5.675 ncnn->-5.675
Mean: keras->0.077 ncnn->0.077 Var: keras->1.193 ncnn->1.193
Cosine Similarity: 0.00000
Keras Feature Map: [2.897 3.292 3.168 2.977 3.069 2.756 2.768 2.901 2.846 2.551]
Ncnn Feature Map: [2.897 3.292 3.168 2.977 3.069 2.756 2.768 2.901 2.846 2.551]
conv_pw_10_relu_Clip
==================================
Layer Name: conv_pw_10_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.506 ncnn->0.506 Var: keras->0.767 ncnn->0.767
Cosine Similarity: 0.00000
Keras Feature Map: [2.897 3.292 3.168 2.977 3.069 2.756 2.768 2.901 2.846 2.551]
Ncnn Feature Map: [2.897 3.292 3.168 2.977 3.069 2.756 2.768 2.901 2.846 2.551]
==================================
Layer Name: conv_dw_11, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->23.093 ncnn->23.093 Min: keras->-21.688 ncnn->-21.688
Mean: keras->-0.376 ncnn->-0.376 Var: keras->2.977 ncnn->2.977
Cosine Similarity: 0.00000
Keras Feature Map: [ -9.656 -11.496 -11.164 -10.557 -10.747 -9.796 -9.778 -10.148 -9.991
-9.12 ]
Ncnn Feature Map: [ -9.656 -11.496 -11.164 -10.557 -10.747 -9.796 -9.778 -10.148 -9.991
-9.12 ]
==================================
Layer Name: conv_dw_11_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->13.245 ncnn->13.245 Min: keras->-11.178 ncnn->-11.178
Mean: keras->0.548 ncnn->0.548 Var: keras->1.615 ncnn->1.615
Cosine Similarity: 0.00000
Keras Feature Map: [-1.556 -3.06 -2.789 -2.293 -2.448 -1.671 -1.656 -1.959 -1.83 -1.118]
Ncnn Feature Map: [-1.556 -3.06 -2.789 -2.293 -2.448 -1.671 -1.656 -1.959 -1.83 -1.118]
conv_dw_11_relu_Clip
==================================
Layer Name: conv_dw_11_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.927 ncnn->0.927 Var: keras->1.176 ncnn->1.176
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_pw_11, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->11.332 ncnn->11.332 Min: keras->-8.324 ncnn->-8.324
Mean: keras->-0.109 ncnn->-0.109 Var: keras->1.792 ncnn->1.792
Cosine Similarity: 0.00000
Keras Feature Map: [-0.498 -1.687 -1.934 -1.633 -1.12 -1.214 -1.579 -1.344 -1.403 -1.608]
Ncnn Feature Map: [-0.498 -1.687 -1.934 -1.633 -1.12 -1.214 -1.579 -1.344 -1.403 -1.608]
==================================
Layer Name: conv_pw_11_bn, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->13.981 ncnn->13.981 Min: keras->-9.234 ncnn->-9.234
Mean: keras->-0.158 ncnn->-0.158 Var: keras->1.460 ncnn->1.460
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.195 -1.852 -2.276 -1.758 -0.875 -1.036 -1.665 -1.261 -1.363 -1.714]
Ncnn Feature Map: [ 0.195 -1.852 -2.276 -1.758 -0.875 -1.036 -1.665 -1.261 -1.363 -1.714]
conv_pw_11_relu_Clip
==================================
Layer Name: conv_pw_11_relu, Layer Shape: keras->(1, 14, 14, 512) ncnn->(512, 14, 14)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.487 ncnn->0.487 Var: keras->0.879 ncnn->0.879
Cosine Similarity: 0.00000
Keras Feature Map: [0.195 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
Ncnn Feature Map: [0.195 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
==================================
Layer Name: conv_pad_12, Layer Shape: keras->(1, 15, 15, 512) ncnn->(512, 15, 15)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.424 ncnn->0.424 Var: keras->0.836 ncnn->0.836
Cosine Similarity: 0.00000
Keras Feature Map: [0.195 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
Ncnn Feature Map: [0.195 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
==================================
Layer Name: conv_dw_12, Layer Shape: keras->(1, 7, 7, 512) ncnn->(512, 7, 7)
Max: keras->22.469 ncnn->22.469 Min: keras->-21.846 ncnn->-21.846
Mean: keras->-0.892 ncnn->-0.892 Var: keras->3.700 ncnn->3.700
Cosine Similarity: 0.00000
Keras Feature Map: [ -0.087 0. 0. 0. 0. -1.075 -10.358]
Ncnn Feature Map: [ -0.087 0. 0. 0. 0. -1.075 -10.358]
==================================
Layer Name: conv_dw_12_bn, Layer Shape: keras->(1, 7, 7, 512) ncnn->(512, 7, 7)
Max: keras->11.277 ncnn->11.277 Min: keras->-5.760 ncnn->-5.760
Mean: keras->1.135 ncnn->1.135 Var: keras->1.609 ncnn->1.609
Cosine Similarity: 0.00000
Keras Feature Map: [3.507 3.53 3.53 3.53 3.53 3.247 0.801]
Ncnn Feature Map: [3.507 3.53 3.53 3.53 3.53 3.247 0.801]
conv_dw_12_relu_Clip
==================================
Layer Name: conv_dw_12_relu, Layer Shape: keras->(1, 7, 7, 512) ncnn->(512, 7, 7)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->1.237 ncnn->1.237 Var: keras->1.468 ncnn->1.468
Cosine Similarity: 0.00000
Keras Feature Map: [3.507 3.53 3.53 3.53 3.53 3.247 0.801]
Ncnn Feature Map: [3.507 3.53 3.53 3.53 3.53 3.247 0.801]
==================================
Layer Name: conv_pw_12, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->5.419 ncnn->5.419 Min: keras->-7.652 ncnn->-7.652
Mean: keras->-0.149 ncnn->-0.149 Var: keras->1.621 ncnn->1.621
Cosine Similarity: 0.00000
Keras Feature Map: [ 0.142 0.103 0.558 0.716 0.642 -0.647 -1.104]
Ncnn Feature Map: [ 0.142 0.103 0.558 0.716 0.642 -0.647 -1.104]
==================================
Layer Name: conv_pw_12_bn, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->8.458 ncnn->8.458 Min: keras->-12.709 ncnn->-12.709
Mean: keras->-0.860 ncnn->-0.860 Var: keras->1.660 ncnn->1.660
Cosine Similarity: 0.00000
Keras Feature Map: [-1.524 -1.633 -0.351 0.094 -0.113 -3.746 -5.034]
Ncnn Feature Map: [-1.524 -1.633 -0.351 0.094 -0.113 -3.746 -5.034]
conv_pw_12_relu_Clip
==================================
Layer Name: conv_pw_12_relu, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.279 ncnn->0.279 Var: keras->0.611 ncnn->0.611
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0.094 0. 0. 0. ]
Ncnn Feature Map: [0. 0. 0. 0.094 0. 0. 0. ]
==================================
Layer Name: conv_dw_13, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->19.846 ncnn->19.846 Min: keras->-13.033 ncnn->-13.033
Mean: keras->-0.403 ncnn->-0.403 Var: keras->1.482 ncnn->1.482
Cosine Similarity: 0.00000
Keras Feature Map: [ 0. 0. -0.127 -0.154 -0.203 -0.067 0. ]
Ncnn Feature Map: [ 0. 0. -0.127 -0.154 -0.203 -0.067 0. ]
==================================
Layer Name: conv_dw_13_bn, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->7.228 ncnn->7.228 Min: keras->-49.981 ncnn->-49.981
Mean: keras->0.391 ncnn->0.391 Var: keras->1.846 ncnn->1.846
Cosine Similarity: 0.00000
Keras Feature Map: [3.428 3.428 3.336 3.317 3.282 3.38 3.428]
Ncnn Feature Map: [3.428 3.428 3.336 3.317 3.282 3.38 3.428]
conv_dw_13_relu_Clip
==================================
Layer Name: conv_dw_13_relu, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.814 ncnn->0.814 Var: keras->1.171 ncnn->1.171
Cosine Similarity: 0.00000
Keras Feature Map: [3.428 3.428 3.336 3.317 3.282 3.38 3.428]
Ncnn Feature Map: [3.428 3.428 3.336 3.317 3.282 3.38 3.428]
==================================
Layer Name: conv_pw_13, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->4.216 ncnn->4.216 Min: keras->-4.993 ncnn->-4.993
Mean: keras->-0.668 ncnn->-0.668 Var: keras->1.250 ncnn->1.250
Cosine Similarity: 0.00000
Keras Feature Map: [-0.55 -0.631 -0.854 -1.15 -0.921 -1.349 -1.346]
Ncnn Feature Map: [-0.55 -0.631 -0.854 -1.15 -0.921 -1.349 -1.346]
==================================
Layer Name: conv_pw_13_bn, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->21.010 ncnn->21.010 Min: keras->-31.714 ncnn->-31.714
Mean: keras->-7.717 ncnn->-7.717 Var: keras->5.685 ncnn->5.685
Cosine Similarity: 0.00000
Keras Feature Map: [ -4.441 -5.239 -7.42 -10.318 -8.078 -12.275 -12.244]
Ncnn Feature Map: [ -4.441 -5.239 -7.42 -10.318 -8.078 -12.275 -12.244]
conv_pw_13_relu_Clip
==================================
Layer Name: conv_pw_13_relu, Layer Shape: keras->(1, 7, 7, 1024) ncnn->(1024, 7, 7)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.228 ncnn->0.228 Var: keras->0.948 ncnn->0.948
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_pad_56, Layer Shape: keras->(1, 8, 8, 1024) ncnn->(1024, 8, 8)
Max: keras->6.000 ncnn->6.000 Min: keras->0.000 ncnn->0.000
Mean: keras->0.174 ncnn->0.174 Var: keras->0.835 ncnn->0.835
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 0. 0. 0. 0.]
Ncnn Feature Map: [0. 0. 0. 0. 0. 0. 0. 0.]
==================================
Layer Name: conv_dw_56, Layer Shape: keras->(1, 3, 3, 1024) ncnn->(1024, 3, 3)
Max: keras->0.458 ncnn->0.458 Min: keras->-0.444 ncnn->-0.444
Mean: keras->0.001 ncnn->0.001 Var: keras->0.048 ncnn->0.048
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0.]
Ncnn Feature Map: [0. 0. 0.]
==================================
Layer Name: conv_dw_56_bn, Layer Shape: keras->(1, 3, 3, 1024) ncnn->(1024, 3, 3)
Max: keras->5.549 ncnn->5.549 Min: keras->-4.500 ncnn->-4.500
Mean: keras->0.052 ncnn->0.052 Var: keras->0.614 ncnn->0.614
Cosine Similarity: 0.00000
Keras Feature Map: [0.468 0.468 0.468]
Ncnn Feature Map: [0.468 0.468 0.468]
conv_dw_56_relu_Clip
==================================
Layer Name: conv_dw_56_relu, Layer Shape: keras->(1, 3, 3, 1024) ncnn->(1024, 3, 3)
Max: keras->5.549 ncnn->5.549 Min: keras->0.000 ncnn->0.000
Mean: keras->0.244 ncnn->0.244 Var: keras->0.390 ncnn->0.390
Cosine Similarity: 0.00000
Keras Feature Map: [0.468 0.468 0.468]
Ncnn Feature Map: [0.468 0.468 0.468]
==================================
Layer Name: conv_pw_56, Layer Shape: keras->(1, 3, 3, 2048) ncnn->(2048, 3, 3)
Max: keras->1.674 ncnn->1.674 Min: keras->-1.647 ncnn->-1.647
Mean: keras->-0.001 ncnn->-0.001 Var: keras->0.379 ncnn->0.379
Cosine Similarity: 0.00000
Keras Feature Map: [0.486 0.746 0.502]
Ncnn Feature Map: [0.486 0.746 0.502]
==================================
Layer Name: conv_pw_56_bn, Layer Shape: keras->(1, 3, 3, 2048) ncnn->(2048, 3, 3)
Max: keras->2.571 ncnn->2.571 Min: keras->-3.136 ncnn->-3.136
Mean: keras->-0.010 ncnn->-0.010 Var: keras->0.705 ncnn->0.705
Cosine Similarity: 0.00000
Keras Feature Map: [-0.25 0.315 -0.214]
Ncnn Feature Map: [-0.25 0.315 -0.214]
conv_pw_56_relu_Clip
==================================
Layer Name: conv_pw_56_relu, Layer Shape: keras->(1, 3, 3, 2048) ncnn->(2048, 3, 3)
Max: keras->2.571 ncnn->2.571 Min: keras->0.000 ncnn->0.000
Mean: keras->0.276 ncnn->0.276 Var: keras->0.409 ncnn->0.409
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0.315 0. ]
Ncnn Feature Map: [0. 0.315 0. ]
==================================
Layer Name: activation_1, Layer Shape: keras->(1, 3, 3, 2048) ncnn->(2048, 3, 3)
Max: keras->2.571 ncnn->2.571 Min: keras->0.000 ncnn->0.000
Mean: keras->0.276 ncnn->0.276 Var: keras->0.409 ncnn->0.409
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0.315 0. ]
Ncnn Feature Map: [0. 0.315 0. ]
==================================
Layer Name: flatten_1, Layer Shape: keras->(1, 18432) ncnn->(1, 1, 18432)
Max: keras->2.571 ncnn->2.571 Min: keras->0.000 ncnn->0.000
Mean: keras->0.276 ncnn->0.276 Var: keras->0.409 ncnn->0.409
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0.338 0.575 0. 0.185 0.553 0.527 0.741 0. 0. ]
Ncnn Feature Map: [0. 0.338 0.575 0. 0.185 0.553 0.527 0.741 0. 0. ]
Top-k:
Keras Top-k: 1692:2.571, 3268:2.400, 10790:2.374, 5788:2.358, 15408:2.313
ncnn Top-k: 1692:2.571, 3268:2.400, 10790:2.374, 5788:2.358, 15408:2.313
==================================
Layer Name: dense_2, Layer Shape: keras->(1, 12) ncnn->(1, 1, 12)
Max: keras->4.518 ncnn->4.518 Min: keras->0.000 ncnn->0.000
Mean: keras->0.618 ncnn->0.618 Var: keras->1.248 ncnn->1.248
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 1.03 0. 0. 1.101 0. 4.518 0.764]
Ncnn Feature Map: [0. 0. 0. 1.03 0. 0. 1.101 0. 4.518 0.764]
Top-k:
Keras Top-k: 8:4.518, 6:1.101, 3:1.030, 9:0.764, 11:0.000
ncnn Top-k: 8:4.518, 6:1.101, 3:1.030, 9:0.764, 11:0.000
==================================
Layer Name: dense_3, Layer Shape: keras->(1, 8) ncnn->(1, 1, 8)
Max: keras->2.119 ncnn->2.119 Min: keras->0.000 ncnn->0.000
Mean: keras->0.265 ncnn->0.265 Var: keras->0.701 ncnn->0.701
Cosine Similarity: 0.00000
Keras Feature Map: [0. 0. 0. 0. 2.119 0. 0. 0. ]
Ncnn Feature Map: [0. 0. 0. 0. 2.119 0. 0. 0. ]
Top-k:
Keras Top-k: 4:2.119, 7:0.000, 6:0.000, 5:0.000, 3:0.000
ncnn Top-k: 4:2.119, 7:0.000, 6:0.000, 5:0.000, 3:0.000
==================================
Layer Name: dense_4, Layer Shape: keras->(1, 1) ncnn->(1, 1, 1)
Max: keras->0.832 ncnn->0.832 Min: keras->0.832 ncnn->0.832
Mean: keras->0.832 ncnn->0.832 Var: keras->0.000 ncnn->0.000
Cosine Similarity: 0.00000
Keras Feature Map: [0.832]
Ncnn Feature Map: [0.832]
Top-k:
Keras Top-k: 0:0.832
ncnn Top-k: 0:0.832
Hi Thanks for your continuous updating. I converted the Keras model with the latest version of your project and compared the result from the NCNN model with one from the original model. But the results are too different from each other.
The results from the Keras model are the following: the real face score: 0.31723082 the fake face score: 0.1382943
The results from the NCNN model are the following: the real face score: 0.68066406 the fake face score: 0.7392578
I send the original Keras model, the converted NCNN model, and the inference scripts. https://we.tl/t-vJESHtg4QF Could u check on your side again? Thanks