Media-Smart / vedadet

A single stage object detection toolbox based on PyTorch
Apache License 2.0
498 stars 128 forks source link

The model and loaded state dict do not match exactly #21

Closed juliusyang97 closed 3 years ago

juliusyang97 commented 3 years ago

你好,请问运行CUDA_VISIBLE_DEVICES="0" python tools/trainval.py configs/trainval/retinanet/retinanet.py时出现以下信息之后就一直不动了,是什么原因,找了半天没找出原因

` loading annotations into memory... Done (t=0.02s) creating index... index created! loading annotations into memory... Done (t=0.00s) creating index... index created! 2020-12-19 19:12:36,718 - vedadet - INFO - Loading weights from torchvision://resnet50 2020-12-19 19:12:36,919 - vedadet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.fc.weight, backbone.fc.bias

missing keys in source state_dict: neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.weight, neck.fpn_convs.4.conv.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.conv.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.conv.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.conv.bias, bbox_head.cls_convs.3.conv.weight, bbox_head.cls_convs.3.conv.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.conv.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.conv.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.conv.bias, bbox_head.reg_convs.3.conv.weight, bbox_head.reg_convs.3.conv.bias, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias

2020-12-19 19:12:37,126 - vedadet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.fc.weight, backbone.fc.bias

missing keys in source state_dict: neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.weight, neck.fpn_convs.4.conv.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.conv.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.conv.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.conv.bias, bbox_head.cls_convs.3.conv.weight, bbox_head.cls_convs.3.conv.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.conv.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.conv.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.conv.bias, bbox_head.reg_convs.3.conv.weight, bbox_head.reg_convs.3.conv.bias, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias `

juliusyang97 commented 3 years ago

还有这个问题 CUDA_VISIBLE_DEVICES="0" python tools/trainval.py configs/trainval/tinaface/tinaface.py 2020-12-19 22:32:14,872 - vedadet - WARNING - EvalHook is not in modes ['train'] 2020-12-19 22:32:14,873 - vedadet - INFO - Loading weights from torchvision://resnet50 2020-12-19 22:32:15,102 - vedadet - WARNING - The model and loaded state dict do not match exactly

hxcai commented 3 years ago

@juliusyang97 This is a warning means that model only load backbone weight and others are not loaded.

juliusyang97 commented 3 years ago

@juliusyang97 This is a warning means that model only load backbone weight and others are not loaded.

您好,那这个运行时出现missing keys in source state_dict: neck.lateral_convs.0.conv.weight......一长串之后就一直不动,没反应,怎么回事啊,希望能得到您的解答

mike112223 commented 3 years ago

Hi @juliusyang97, In order to speed up the training process, the default setting of logger's interval is 100 that may cause a long wait for printing the info. So you can modify this line 'dict(typename='LoggerHook', interval=100)' of hooks in config, e.g 'dict(typename='LoggerHook', interval=1)'

juliusyang97 commented 3 years ago

In order to speed up the training process, the default setting of logger's interval is 100 that may cause a long wait for printing the info. So you can modify this line 'dict(typename='LoggerHook', interval=100)' of hooks in config, e.g 'dict(typename='LoggerHook', interval=1)'

好的好的, 谢谢我试一试

mike112223 commented 3 years ago

@juliusyang97, if it is still stuck, please provide you config.

juliusyang97 commented 3 years ago

您好,我现在还有这个问题

Hi @juliusyang97, In order to speed up the training process, the default setting of logger's interval is 100 that may cause a long wait for printing the info. So you can modify this line 'dict(typename='LoggerHook', interval=100)' of hooks in config, e.g 'dict(typename='LoggerHook', interval=1)'

您好,我现在还是有这个问题 `CUDA_VISIBLE_DEVICES="0" python tools/trainval.py configs/trainval/tinaface/tinaface.py
2020-12-29 18:09:20,558 - vedadet - WARNING - EvalHook is not in modes ['train'] 2020-12-29 18:09:20,559 - vedadet - INFO - Loading weights from torchvision://resnet50 2020-12-29 18:09:20,843 - vedadet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.weight, backbone.bn1.bias, backbone.fc.weight, backbone.fc.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias

missing keys in source state_dict: backbone.gn1.weight, backbone.gn1.bias, backbone.layer1.0.gn1.weight, backbone.layer1.0.gn1.bias, backbone.layer1.0.gn2.weight, backbone.layer1.0.gn2.bias, backbone.layer1.0.gn3.weight, backbone.layer1.0.gn3.bias, backbone.layer1.1.gn1.weight, backbone.layer1.1.gn1.bias, backbone.layer1.1.gn2.weight, backbone.layer1.1.gn2.bias, backbone.layer1.1.gn3.weight, backbone.layer1.1.gn3.bias, backbone.layer1.2.gn1.weight, backbone.layer1.2.gn1.bias, backbone.layer1.2.gn2.weight, backbone.layer1.2.gn2.bias, backbone.layer1.2.gn3.weight, backbone.layer1.2.gn3.bias, backbone.layer2.0.gn1.weight, backbone.layer2.0.gn1.bias, backbone.layer2.0.gn2.weight, backbone.layer2.0.gn2.bias, backbone.layer2.0.gn3.weight, backbone.layer2.0.gn3.bias, backbone.layer2.1.gn1.weight, backbone.layer2.1.gn1.bias, backbone.layer2.1.gn2.weight, backbone.layer2.1.gn2.bias, backbone.layer2.1.gn3.weight, backbone.layer2.1.gn3.bias, backbone.layer2.2.gn1.weight, backbone.layer2.2.gn1.bias, backbone.layer2.2.gn2.weight, backbone.layer2.2.gn2.bias, backbone.layer2.2.gn3.weight, backbone.layer2.2.gn3.bias, backbone.layer2.3.gn1.weight, backbone.layer2.3.gn1.bias, backbone.layer2.3.gn2.weight, backbone.layer2.3.gn2.bias, backbone.layer2.3.gn3.weight, backbone.layer2.3.gn3.bias, backbone.layer3.0.gn1.weight, backbone.layer3.0.gn1.bias, backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.0.gn2.weight, backbone.layer3.0.gn2.bias, backbone.layer3.0.gn3.weight, backbone.layer3.0.gn3.bias, backbone.layer3.1.gn1.weight, backbone.layer3.1.gn1.bias, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.1.gn2.weight, backbone.layer3.1.gn2.bias, backbone.layer3.1.gn3.weight, backbone.layer3.1.gn3.bias, backbone.layer3.2.gn1.weight, backbone.layer3.2.gn1.bias, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.2.gn2.weight, backbone.layer3.2.gn2.bias, backbone.layer3.2.gn3.weight, backbone.layer3.2.gn3.bias, backbone.layer3.3.gn1.weight, backbone.layer3.3.gn1.bias, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.3.gn2.weight, backbone.layer3.3.gn2.bias, backbone.layer3.3.gn3.weight, backbone.layer3.3.gn3.bias, backbone.layer3.4.gn1.weight, backbone.layer3.4.gn1.bias, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.4.gn2.weight, backbone.layer3.4.gn2.bias, backbone.layer3.4.gn3.weight, backbone.layer3.4.gn3.bias, backbone.layer3.5.gn1.weight, backbone.layer3.5.gn1.bias, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer3.5.gn2.weight, backbone.layer3.5.gn2.bias, backbone.layer3.5.gn3.weight, backbone.layer3.5.gn3.bias, backbone.layer4.0.gn1.weight, backbone.layer4.0.gn1.bias, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.0.gn2.weight, backbone.layer4.0.gn2.bias, backbone.layer4.0.gn3.weight, backbone.layer4.0.gn3.bias, backbone.layer4.1.gn1.weight, backbone.layer4.1.gn1.bias, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.1.gn2.weight, backbone.layer4.1.gn2.bias, backbone.layer4.1.gn3.weight, backbone.layer4.1.gn3.bias, backbone.layer4.2.gn1.weight, backbone.layer4.2.gn1.bias, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, backbone.layer4.2.gn2.weight, backbone.layer4.2.gn2.bias, backbone.layer4.2.gn3.weight, backbone.layer4.2.gn3.bias, neck.0.lateral_convs.0.conv.weight, neck.0.lateral_convs.0.gn.weight, neck.0.lateral_convs.0.gn.bias, neck.0.lateral_convs.1.conv.weight, neck.0.lateral_convs.1.gn.weight, neck.0.lateral_convs.1.gn.bias, neck.0.lateral_convs.2.conv.weight, neck.0.lateral_convs.2.gn.weight, neck.0.lateral_convs.2.gn.bias, neck.0.lateral_convs.3.conv.weight, neck.0.lateral_convs.3.gn.weight, neck.0.lateral_convs.3.gn.bias, neck.0.fpn_convs.0.conv.weight, neck.0.fpn_convs.0.gn.weight, neck.0.fpn_convs.0.gn.bias, neck.0.fpn_convs.1.conv.weight, neck.0.fpn_convs.1.gn.weight, neck.0.fpn_convs.1.gn.bias, neck.0.fpn_convs.2.conv.weight, neck.0.fpn_convs.2.gn.weight, neck.0.fpn_convs.2.gn.bias, neck.0.fpn_convs.3.conv.weight, neck.0.fpn_convs.3.gn.weight, neck.0.fpn_convs.3.gn.bias, neck.0.fpn_convs.4.conv.weight, neck.0.fpn_convs.4.gn.weight, neck.0.fpn_convs.4.gn.bias, neck.0.fpn_convs.5.conv.weight, neck.0.fpn_convs.5.gn.weight, neck.0.fpn_convs.5.gn.bias, neck.1.level_convs.0.0.conv.weight, neck.1.level_convs.0.0.gn.weight, neck.1.level_convs.0.0.gn.bias, neck.1.level_convs.0.1.conv.weight, neck.1.level_convs.0.1.gn.weight, neck.1.level_convs.0.1.gn.bias, neck.1.level_convs.0.2.conv.weight, neck.1.level_convs.0.2.gn.weight, neck.1.level_convs.0.2.gn.bias, neck.1.level_convs.0.3.conv.weight, neck.1.level_convs.0.3.gn.weight, neck.1.level_convs.0.3.gn.bias, neck.1.level_convs.0.4.conv.weight, neck.1.level_convs.0.4.gn.weight, neck.1.level_convs.0.4.gn.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.gn.weight, bbox_head.cls_convs.2.gn.bias, bbox_head.cls_convs.3.conv.weight, bbox_head.cls_convs.3.gn.weight, bbox_head.cls_convs.3.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.gn.weight, bbox_head.reg_convs.2.gn.bias, bbox_head.reg_convs.3.conv.weight, bbox_head.reg_convs.3.gn.weight, bbox_head.reg_convs.3.gn.bias, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias, bbox_head.retina_iou.weight, bbox_head.retina_iou.bias 卡在这里不动 我的环境配置: addict 2.4.0 albumentations 0.5.2 certifi 2020.12.5 cycler 0.10.0 Cython 0.29.21 decorator 4.4.2 imagecorruptions 1.1.2 imageio 2.9.0 imgaug 0.4.0 kiwisolver 1.3.1 matplotlib 3.3.3 mmpycocotools 12.0.3 networkx 2.5 numpy 1.19.4 opencv-python 4.4.0.46 opencv-python-headless 4.4.0.46 Pillow 8.0.1 pip 20.3.3 pyparsing 2.4.7 python-dateutil 2.8.1 PyWavelets 1.1.1 PyYAML 5.3.1 scikit-image 0.18.0 scipy 1.5.4 setuptools 51.0.0.post20201207 Shapely 1.7.1 six 1.15.0 terminaltables 3.1.0 tifffile 2020.12.8 torch 1.7.1 torchvision 0.8.2 typing-extensions 3.7.4.3 vedadet 0.1.0 /home/user/yjq/vedadet wheel 0.36.2 yapf 0.30.0 nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sat_Aug_25_21:08:01_CDT_2018 Cuda compilation tools, release 10.0, V10.0.130 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.57 Driver Version: 450.57 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 TITAN Xp Off | 00000000:02:00.0 Off | N/A | | 19% 31C P0 61W / 250W | 0MiB / 12196MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 TITAN Xp Off | 00000000:03:00.0 Off | N/A | | 17% 36C P0 60W / 250W | 0MiB / 12196MiB | 0% Default | | | | N/A |`

请您帮我看看吧

juliusyang97 commented 3 years ago

您好,我现在还有这个问题

Hi @juliusyang97, In order to speed up the training process, the default setting of logger's interval is 100 that may cause a long wait for printing the info. So you can modify this line 'dict(typename='LoggerHook', interval=100)' of hooks in config, e.g 'dict(typename='LoggerHook', interval=1)'

您好,我现在还是有这个问题 `CUDA_VISIBLE_DEVICES="0" python tools/trainval.py configs/trainval/tinaface/tinaface.py 2020-12-29 18:09:20,558 - vedadet - WARNING - EvalHook is not in modes ['train'] 2020-12-29 18:09:20,559 - vedadet - INFO - Loading weights from torchvision://resnet50 2020-12-29 18:09:20,843 - vedadet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.weight, backbone.bn1.bias, backbone.fc.weight, backbone.fc.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias

missing keys in source state_dict: backbone.gn1.weight, backbone.gn1.bias, backbone.layer1.0.gn1.weight, backbone.layer1.0.gn1.bias, backbone.layer1.0.gn2.weight, backbone.layer1.0.gn2.bias, backbone.layer1.0.gn3.weight, backbone.layer1.0.gn3.bias, backbone.layer1.1.gn1.weight, backbone.layer1.1.gn1.bias, backbone.layer1.1.gn2.weight, backbone.layer1.1.gn2.bias, backbone.layer1.1.gn3.weight, backbone.layer1.1.gn3.bias, backbone.layer1.2.gn1.weight, backbone.layer1.2.gn1.bias, backbone.layer1.2.gn2.weight, backbone.layer1.2.gn2.bias, backbone.layer1.2.gn3.weight, backbone.layer1.2.gn3.bias, backbone.layer2.0.gn1.weight, backbone.layer2.0.gn1.bias, backbone.layer2.0.gn2.weight, backbone.layer2.0.gn2.bias, backbone.layer2.0.gn3.weight, backbone.layer2.0.gn3.bias, backbone.layer2.1.gn1.weight, backbone.layer2.1.gn1.bias, backbone.layer2.1.gn2.weight, backbone.layer2.1.gn2.bias, backbone.layer2.1.gn3.weight, backbone.layer2.1.gn3.bias, backbone.layer2.2.gn1.weight, backbone.layer2.2.gn1.bias, backbone.layer2.2.gn2.weight, backbone.layer2.2.gn2.bias, backbone.layer2.2.gn3.weight, backbone.layer2.2.gn3.bias, backbone.layer2.3.gn1.weight, backbone.layer2.3.gn1.bias, backbone.layer2.3.gn2.weight, backbone.layer2.3.gn2.bias, backbone.layer2.3.gn3.weight, backbone.layer2.3.gn3.bias, backbone.layer3.0.gn1.weight, backbone.layer3.0.gn1.bias, backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.0.gn2.weight, backbone.layer3.0.gn2.bias, backbone.layer3.0.gn3.weight, backbone.layer3.0.gn3.bias, backbone.layer3.1.gn1.weight, backbone.layer3.1.gn1.bias, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.1.gn2.weight, backbone.layer3.1.gn2.bias, backbone.layer3.1.gn3.weight, backbone.layer3.1.gn3.bias, backbone.layer3.2.gn1.weight, backbone.layer3.2.gn1.bias, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.2.gn2.weight, backbone.layer3.2.gn2.bias, backbone.layer3.2.gn3.weight, backbone.layer3.2.gn3.bias, backbone.layer3.3.gn1.weight, backbone.layer3.3.gn1.bias, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.3.gn2.weight, backbone.layer3.3.gn2.bias, backbone.layer3.3.gn3.weight, backbone.layer3.3.gn3.bias, backbone.layer3.4.gn1.weight, backbone.layer3.4.gn1.bias, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.4.gn2.weight, backbone.layer3.4.gn2.bias, backbone.layer3.4.gn3.weight, backbone.layer3.4.gn3.bias, backbone.layer3.5.gn1.weight, backbone.layer3.5.gn1.bias, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer3.5.gn2.weight, backbone.layer3.5.gn2.bias, backbone.layer3.5.gn3.weight, backbone.layer3.5.gn3.bias, backbone.layer4.0.gn1.weight, backbone.layer4.0.gn1.bias, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.0.gn2.weight, backbone.layer4.0.gn2.bias, backbone.layer4.0.gn3.weight, backbone.layer4.0.gn3.bias, backbone.layer4.1.gn1.weight, backbone.layer4.1.gn1.bias, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.1.gn2.weight, backbone.layer4.1.gn2.bias, backbone.layer4.1.gn3.weight, backbone.layer4.1.gn3.bias, backbone.layer4.2.gn1.weight, backbone.layer4.2.gn1.bias, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, backbone.layer4.2.gn2.weight, backbone.layer4.2.gn2.bias, backbone.layer4.2.gn3.weight, backbone.layer4.2.gn3.bias, neck.0.lateral_convs.0.conv.weight, neck.0.lateral_convs.0.gn.weight, neck.0.lateral_convs.0.gn.bias, neck.0.lateral_convs.1.conv.weight, neck.0.lateral_convs.1.gn.weight, neck.0.lateral_convs.1.gn.bias, neck.0.lateral_convs.2.conv.weight, neck.0.lateral_convs.2.gn.weight, neck.0.lateral_convs.2.gn.bias, neck.0.lateral_convs.3.conv.weight, neck.0.lateral_convs.3.gn.weight, neck.0.lateral_convs.3.gn.bias, neck.0.fpn_convs.0.conv.weight, neck.0.fpn_convs.0.gn.weight, neck.0.fpn_convs.0.gn.bias, neck.0.fpn_convs.1.conv.weight, neck.0.fpn_convs.1.gn.weight, neck.0.fpn_convs.1.gn.bias, neck.0.fpn_convs.2.conv.weight, neck.0.fpn_convs.2.gn.weight, neck.0.fpn_convs.2.gn.bias, neck.0.fpn_convs.3.conv.weight, neck.0.fpn_convs.3.gn.weight, neck.0.fpn_convs.3.gn.bias, neck.0.fpn_convs.4.conv.weight, neck.0.fpn_convs.4.gn.weight, neck.0.fpn_convs.4.gn.bias, neck.0.fpn_convs.5.conv.weight, neck.0.fpn_convs.5.gn.weight, neck.0.fpn_convs.5.gn.bias, neck.1.level_convs.0.0.conv.weight, neck.1.level_convs.0.0.gn.weight, neck.1.level_convs.0.0.gn.bias, neck.1.level_convs.0.1.conv.weight, neck.1.level_convs.0.1.gn.weight, neck.1.level_convs.0.1.gn.bias, neck.1.level_convs.0.2.conv.weight, neck.1.level_convs.0.2.gn.weight, neck.1.level_convs.0.2.gn.bias, neck.1.level_convs.0.3.conv.weight, neck.1.level_convs.0.3.gn.weight, neck.1.level_convs.0.3.gn.bias, neck.1.level_convs.0.4.conv.weight, neck.1.level_convs.0.4.gn.weight, neck.1.level_convs.0.4.gn.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.gn.weight, bbox_head.cls_convs.2.gn.bias, bbox_head.cls_convs.3.conv.weight, bbox_head.cls_convs.3.gn.weight, bbox_head.cls_convs.3.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.gn.weight, bbox_head.reg_convs.2.gn.bias, bbox_head.reg_convs.3.conv.weight, bbox_head.reg_convs.3.gn.weight, bbox_head.reg_convs.3.gn.bias, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias, bbox_head.retina_iou.weight, bbox_head.retina_iou.bias 卡在这里不动 我的环境配置:addict 2.4.0 albumentations 0.5.2 certifi 2020.12.5 cycler 0.10.0 Cython 0.29.21 decorator 4.4.2 imagecorruptions 1.1.2 imageio 2.9.0 imgaug 0.4.0 kiwisolver 1.3.1 matplotlib 3.3.3 mmpycocotools 12.0.3 networkx 2.5 numpy 1.19.4 opencv-python 4.4.0.46 opencv-python-headless 4.4.0.46 Pillow 8.0.1 pip 20.3.3 pyparsing 2.4.7 python-dateutil 2.8.1 PyWavelets 1.1.1 PyYAML 5.3.1 scikit-image 0.18.0 scipy 1.5.4 setuptools 51.0.0.post20201207 Shapely 1.7.1 six 1.15.0 terminaltables 3.1.0 tifffile 2020.12.8 torch 1.7.1 torchvision 0.8.2 typing-extensions 3.7.4.3 vedadet 0.1.0 /home/user/yjq/vedadet wheel 0.36.2 yapf 0.30.0`nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sat_Aug_25_21:08:01_CDT_2018 Cuda compilation tools, release 10.0, V10.0.130 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.57 Driver Version: 450.57 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 TITAN Xp Off | 00000000:02:00.0 Off | N/A | | 19% 31C P0 61W / 250W | 0MiB / 12196MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 TITAN Xp Off | 00000000:03:00.0 Off | N/A | | 17% 36C P0 60W / 250W | 0MiB / 12196MiB | 0% Default | | | | N/A |

请您帮我看看吧

`# packages in environment at /home/user/miniconda3/envs/vedadet: #

Name Version Build Channel

_libgcc_mutex 0.1 main https://mirrors.ustc.edu.cn/anaconda/pkgs/main addict 2.4.0 pypi_0 pypi albumentations 0.5.2 pypi_0 pypi ca-certificates 2020.12.8 h06a4308_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main certifi 2020.12.5 py37h06a4308_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main cycler 0.10.0 pypi_0 pypi cython 0.29.21 pypi_0 pypi decorator 4.4.2 pypi_0 pypi imagecorruptions 1.1.2 pypi_0 pypi imageio 2.9.0 pypi_0 pypi imgaug 0.4.0 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi ld_impl_linux-64 2.33.1 h53a641e_7 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libedit 3.1.20191231 h14c3975_1 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libffi 3.3 he6710b0_2 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libgcc-ng 9.1.0 hdf63c60_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libstdcxx-ng 9.1.0 hdf63c60_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main matplotlib 3.3.3 pypi_0 pypi mmpycocotools 12.0.3 pypi_0 pypi ncurses 6.2 he6710b0_1 https://mirrors.ustc.edu.cn/anaconda/pkgs/main networkx 2.5 pypi_0 pypi numpy 1.19.4 pypi_0 pypi opencv-python 4.4.0.46 pypi_0 pypi opencv-python-headless 4.4.0.46 pypi_0 pypi openssl 1.1.1i h27cfd23_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main pillow 8.0.1 pypi_0 pypi pip 20.3.3 py37h06a4308_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main pyparsing 2.4.7 pypi_0 pypi python 3.7.9 h7579374_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main python-dateutil 2.8.1 pypi_0 pypi pywavelets 1.1.1 pypi_0 pypi pyyaml 5.3.1 pypi_0 pypi readline 8.0 h7b6447c_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main scikit-image 0.18.0 pypi_0 pypi scipy 1.5.4 pypi_0 pypi setuptools 51.0.0 py37h06a4308_2 https://mirrors.ustc.edu.cn/anaconda/pkgs/main shapely 1.7.1 pypi_0 pypi six 1.15.0 pypi_0 pypi sqlite 3.33.0 h62c20be_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main terminaltables 3.1.0 pypi_0 pypi tifffile 2020.12.8 pypi_0 pypi tk 8.6.10 hbc83047_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main torch 1.7.1 pypi_0 pypi torchvision 0.8.2 pypi_0 pypi typing-extensions 3.7.4.3 pypi_0 pypi vedadet 0.1.0 dev_0 wheel 0.36.2 pyhd3eb1b0_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main xz 5.2.5 h7b6447c_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main yapf 0.30.0 pypi_0 pypi zlib 1.2.11 h7b6447c_3 https://mirrors.ustc.edu.cn/anaconda/pkgs/main `

mike112223 commented 3 years ago

Did you use your own dataset?

juliusyang97 commented 3 years ago

Did you use your own dataset?

yes, I used my own dataset

juliusyang97 commented 3 years ago

Did you use your own dataset?

yes, I used my own dataset

请问这是和我数据集的格式或者数据集相关的其他的东西有关系吗,您这么一说我好像意识到我对数据集的格式没怎么仔细检查过

mike112223 commented 3 years ago

please check #20

juliusyang97 commented 3 years ago

请问您是如何使他成功的呢,我为什么一直在那里不动,您等待了多长时间  

杨军奇 yangjunqi1997@foxmail.com

 

------------------ 原始邮件 ------------------ 发件人: "Pomelo"<notifications@github.com>; 发送时间: 2021年1月20日(星期三) 中午1:32 收件人: "Media-Smart/vedadet"<vedadet@noreply.github.com>; 抄送: "杨军奇"<2107536844@qq.com>; "Mention"<mention@noreply.github.com>; 主题: Re: [Media-Smart/vedadet] The model and loaded state dict do not match exactly (#21)

I have encountered the identical issue when trying to train tinaface, but at the end it seems to be working:

2021-01-20 13:22:11,689 - vedadet - WARNING - EvalHook is not in modes ['train'] 2021-01-20 13:22:11,689 - vedadet - INFO - Loading weights from torchvision://resnet50 2021-01-20 13:22:11,811 - vedadet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.weight, backbone.bn1.bias, backbone.fc.weight, backbone.fc.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias

missing keys in source state_dict: backbone.gn1.weight, backbone.gn1.bias, backbone.layer1.0.gn1.weight, backbone.layer1.0.gn1.bias, backbone.layer1.0.gn2.weight, backbone.layer1.0.gn2.bias, backbone.layer1.0.gn3.weight, backbone.layer1.0.gn3.bias, backbone.layer1.1.gn1.weight, backbone.layer1.1.gn1.bias, backbone.layer1.1.gn2.weight, backbone.layer1.1.gn2.bias, backbone.layer1.1.gn3.weight, backbone.layer1.1.gn3.bias, backbone.layer1.2.gn1.weight, backbone.layer1.2.gn1.bias, backbone.layer1.2.gn2.weight, backbone.layer1.2.gn2.bias, backbone.layer1.2.gn3.weight, backbone.layer1.2.gn3.bias, backbone.layer2.0.gn1.weight, backbone.layer2.0.gn1.bias, backbone.layer2.0.gn2.weight, backbone.layer2.0.gn2.bias, backbone.layer2.0.gn3.weight, backbone.layer2.0.gn3.bias, backbone.layer2.1.gn1.weight, backbone.layer2.1.gn1.bias, backbone.layer2.1.gn2.weight, backbone.layer2.1.gn2.bias, backbone.layer2.1.gn3.weight, backbone.layer2.1.gn3.bias, backbone.layer2.2.gn1.weight, backbone.layer2.2.gn1.bias, backbone.layer2.2.gn2.weight, backbone.layer2.2.gn2.bias, backbone.layer2.2.gn3.weight, backbone.layer2.2.gn3.bias, backbone.layer2.3.gn1.weight, backbone.layer2.3.gn1.bias, backbone.layer2.3.gn2.weight, backbone.layer2.3.gn2.bias, backbone.layer2.3.gn3.weight, backbone.layer2.3.gn3.bias, backbone.layer3.0.gn1.weight, backbone.layer3.0.gn1.bias, backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.0.gn2.weight, backbone.layer3.0.gn2.bias, backbone.layer3.0.gn3.weight, backbone.layer3.0.gn3.bias, backbone.layer3.1.gn1.weight, backbone.layer3.1.gn1.bias, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.1.gn2.weight, backbone.layer3.1.gn2.bias, backbone.layer3.1.gn3.weight, backbone.layer3.1.gn3.bias, backbone.layer3.2.gn1.weight, backbone.layer3.2.gn1.bias, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.2.gn2.weight, backbone.layer3.2.gn2.bias, backbone.layer3.2.gn3.weight, backbone.layer3.2.gn3.bias, backbone.layer3.3.gn1.weight, backbone.layer3.3.gn1.bias, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.3.gn2.weight, backbone.layer3.3.gn2.bias, backbone.layer3.3.gn3.weight, backbone.layer3.3.gn3.bias, backbone.layer3.4.gn1.weight, backbone.layer3.4.gn1.bias, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.4.gn2.weight, backbone.layer3.4.gn2.bias, backbone.layer3.4.gn3.weight, backbone.layer3.4.gn3.bias, backbone.layer3.5.gn1.weight, backbone.layer3.5.gn1.bias, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer3.5.gn2.weight, backbone.layer3.5.gn2.bias, backbone.layer3.5.gn3.weight, backbone.layer3.5.gn3.bias, backbone.layer4.0.gn1.weight, backbone.layer4.0.gn1.bias, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.0.gn2.weight, backbone.layer4.0.gn2.bias, backbone.layer4.0.gn3.weight, backbone.layer4.0.gn3.bias, backbone.layer4.1.gn1.weight, backbone.layer4.1.gn1.bias, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.1.gn2.weight, backbone.layer4.1.gn2.bias, backbone.layer4.1.gn3.weight, backbone.layer4.1.gn3.bias, backbone.layer4.2.gn1.weight, backbone.layer4.2.gn1.bias, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, backbone.layer4.2.gn2.weight, backbone.layer4.2.gn2.bias, backbone.layer4.2.gn3.weight, backbone.layer4.2.gn3.bias, neck.0.lateral_convs.0.conv.weight, neck.0.lateral_convs.0.gn.weight, neck.0.lateral_convs.0.gn.bias, neck.0.lateral_convs.1.conv.weight, neck.0.lateral_convs.1.gn.weight, neck.0.lateral_convs.1.gn.bias, neck.0.lateral_convs.2.conv.weight, neck.0.lateral_convs.2.gn.weight, neck.0.lateral_convs.2.gn.bias, neck.0.lateral_convs.3.conv.weight, neck.0.lateral_convs.3.gn.weight, neck.0.lateral_convs.3.gn.bias, neck.0.fpn_convs.0.conv.weight, neck.0.fpn_convs.0.gn.weight, neck.0.fpn_convs.0.gn.bias, neck.0.fpn_convs.1.conv.weight, neck.0.fpn_convs.1.gn.weight, neck.0.fpn_convs.1.gn.bias, neck.0.fpn_convs.2.conv.weight, neck.0.fpn_convs.2.gn.weight, neck.0.fpn_convs.2.gn.bias, neck.0.fpn_convs.3.conv.weight, neck.0.fpn_convs.3.gn.weight, neck.0.fpn_convs.3.gn.bias, neck.0.fpn_convs.4.conv.weight, neck.0.fpn_convs.4.gn.weight, neck.0.fpn_convs.4.gn.bias, neck.0.fpn_convs.5.conv.weight, neck.0.fpn_convs.5.gn.weight, neck.0.fpn_convs.5.gn.bias, neck.1.level_convs.0.0.conv.weight, neck.1.level_convs.0.0.gn.weight, neck.1.level_convs.0.0.gn.bias, neck.1.level_convs.0.1.conv.weight, neck.1.level_convs.0.1.gn.weight, neck.1.level_convs.0.1.gn.bias, neck.1.level_convs.0.2.conv.weight, neck.1.level_convs.0.2.gn.weight, neck.1.level_convs.0.2.gn.bias, neck.1.level_convs.0.3.conv.weight, neck.1.level_convs.0.3.gn.weight, neck.1.level_convs.0.3.gn.bias, neck.1.level_convs.0.4.conv.weight, neck.1.level_convs.0.4.gn.weight, neck.1.level_convs.0.4.gn.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.gn.weight, bbox_head.cls_convs.2.gn.bias, bbox_head.cls_convs.3.conv.weight, bbox_head.cls_convs.3.gn.weight, bbox_head.cls_convs.3.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.gn.weight, bbox_head.reg_convs.2.gn.bias, bbox_head.reg_convs.3.conv.weight, bbox_head.reg_convs.3.gn.weight, bbox_head.reg_convs.3.gn.bias, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias, bbox_head.retina_iou.weight, bbox_head.retina_iou.bias

/home/zhuang/miniconda3/envs/vedadet/lib/python3.6/site-packages/torch/nn/functional.py:3121: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode)) /home/zhuang/scripts/code for facetracking/vedadet/vedadet/criteria/iou_bbox_anchor_criterion.py:329: UserWarning: This overload of nonzero is deprecated: nonzero() Consider using one of the following signatures instead: nonzero(*, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.) iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero()] = 1. 2021-01-20 13:22:50,511 - vedadet - INFO - Saved weights, optimizer, meta at epoch 1, iter 70 as ./workdir/tinaface/epoch_1 2021-01-20 13:23:29,618 - vedadet - INFO - Saved weights, optimizer, meta at epoch 2, iter 140 as ./workdir/tinaface/epoch_2 2021-01-20 13:24:08,643 - vedadet - INFO - Saved weights, optimizer, meta at epoch 3, iter 210 as ./workdir/tinaface/epoch_3 2021-01-20 13:24:48,695 - vedadet - INFO - Saved weights, optimizer, meta at epoch 4, iter 280 as ./workdir/tinaface/epoch_4 2021-01-20 13:25:29,062 - vedadet - INFO - Saved weights, optimizer, meta at epoch 5, iter 350 as ./workdir/tinaface/epoch_5 2021-01-20 13:26:09,527 - vedadet - INFO - Saved weights, optimizer, meta at epoch 6, iter 420 as ./workdir/tinaface/epoch_6 2021-01-20 13:26:50,262 - vedadet - INFO - Saved weights, optimizer, meta at epoch 7, iter 490 as ./workdir/tinaface/epoch_7

However, is this normal? it seems that the programe is saving weights at each epoch, but it should not be this quick..

— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub, or unsubscribe.

ZHUANGHP commented 3 years ago

change tinaface.py of dict(typename='LoggerHook', interval=100) to dict(typename='LoggerHook', interval=1), and it should show the training infomation.

juliusyang97 commented 3 years ago

change tinaface.py of dict(typename='LoggerHook', interval=100) to dict(typename='LoggerHook', interval=1), and it should show the training infomation.

这很是让人头大,这个方法在我这里却不起作用

juliusyang97 commented 3 years ago

change tinaface.py of dict(typename='LoggerHook', interval=100) to dict(typename='LoggerHook', interval=1), and it should show the training infomation.

您好,请问您是否愿意我们添加为好友,我的QQ:2107536844