MiaoRain / lund

9 stars 2 forks source link

机器学习面试问题汇总 #9

Open MiaoRain opened 4 years ago

MiaoRain commented 4 years ago

为什么CNN比全连接好? 常用图像分类和分割的数据库有哪些?

MiaoRain commented 4 years ago

逻辑回归 2.3 与 SVM 相同点:

都是分类算法,本质上都是在找最佳分类超平面; 都是监督学习算法; 都是判别式模型,判别模型不关心数据是怎么生成的,它只关心数据之间的差别,然后用差别来简单对给定的一个数据进行分类; 都可以增加不同的正则项。 不同点:

LR 是一个统计的方法,SVM 是一个几何的方法; SVM 的处理方法是只考虑 Support Vectors,也就是和分类最相关的少数点去学习分类器。而逻辑回归通过非线性映射减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重; 损失函数不同:LR 的损失函数是交叉熵,SVM 的损失函数是 HingeLoss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。对 HingeLoss 来说,其零区域对应的正是非支持向量的普通样本,从而所有的普通样本都不参与最终超平面的决定,这是支持向量机最大的优势所在,对训练样本数目的依赖大减少,而且提高了训练效率; LR 是参数模型,SVM 是非参数模型,参数模型的前提是假设数据服从某一分布,该分布由一些参数确定(比如正太分布由均值和方差确定),在此基础上构建的模型称为参数模型;非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。所以 LR 受数据分布影响,尤其是样本不均衡时影响很大,需要先做平衡,而 SVM 不直接依赖于分布; LR 可以产生概率,SVM 不能; LR 不依赖样本之间的距离,SVM 是基于距离的; LR 相对来说模型更简单好理解,特别是大规模线性分类时并行计算比较方便。而 SVM 的理解和优化相对来说复杂一些,SVM 转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。 2.4 与朴素贝叶斯 朴素贝叶斯和逻辑回归都属于分类模型,当朴素贝叶斯的条件概率 [公式] 服从高斯分布时,它计算出来的 P(Y=1|X) 形式跟逻辑回归是一样的。

两个模型不同的地方在于:

逻辑回归是判别式模型 p(y|x),朴素贝叶斯是生成式模型 p(x,y):判别式模型估计的是条件概率分布,给定观测变量 x 和目标变量 y 的条件模型,由数据直接学习决策函数 y=f(x) 或者条件概率分布 P(y|x) 作为预测的模型。判别方法关心的是对于给定的输入 x,应该预测什么样的输出 y;而生成式模型估计的是联合概率分布,基本思想是首先建立样本的联合概率概率密度模型 P(x,y),然后再得到后验概率 P(y|x),再利用它进行分类,生成式更关心的是对于给定输入 x 和输出 y 的生成关系; 朴素贝叶斯的前提是条件独立,每个特征权重独立,所以如果数据不符合这个情况,朴素贝叶斯的分类表现就没逻辑会好了。

image

MiaoRain commented 4 years ago

image

MiaoRain commented 4 years ago

ROC曲线和AUC值的计算 https://zhuanlan.zhihu.com/p/25212301

MiaoRain commented 4 years ago

常见的损失函数(loss function)总结 https://zhuanlan.zhihu.com/p/58883095

image image

当使用sigmoid作为激活函数的时候,常用交叉熵损失函数而不用均方误差损失函数,因为它可以完美解决平方损失函数权重更新过慢的问题,具有“误差大的时候,权重更新快;误差小的时候,权重更新慢”的良好性质。 image

MiaoRain commented 4 years ago