Closed hbaniecki closed 2 years ago
Windows 10, R v4.1, forester v1.0.0 (fresh install - newest dependencies)
forester
Error message:
Error in GP_deviance(beta = row, X = X, Y = Y, nug_thres = nug_thres, : Infinite values of the Deviance Function, unable to find optimum parameters
Code:
load(file = "dane_short_nefro.rda") df_raw <- dane_short colnames(df_raw) colnames(df_raw) <- c("aki", "covid_goraczka", "covid_oddechowe", "covid_pokarmowy", "covid_neurologiczne", "nadcisnienie", "cukrzyca", "miazdzyca_serca", "hiperlipidemia", "kreatynina", "mioglobina", "aki_wywiad", "respirator", "pchn") table(df_raw$aki_wywiad) table(df_raw$aki, df_raw$aki_wywiad) df <- df_raw[df_raw$aki_wywiad == 0, colnames(df_raw) != "aki_wywiad"] dim(df) table(df$aki) library(forester) set.seed(123) # df$aki <- factor(df$aki) ## without this returns an error best_model <- forester( data = df, target = "aki", type = "classification", metric = "precision", tune = TRUE )
@lhthien09 has the data.
Hi, this problem comes from rBayesianOptimization package, whentune = TRUE, we will investigate and add constraints to avoid this.
rBayesianOptimization
tune = TRUE
Windows 10, R v4.1,
forester
v1.0.0 (fresh install - newest dependencies)Error message:
Code:
@lhthien09 has the data.