Closed hbaniecki closed 4 years ago
fixes #125
library("DALEX") library("ingredients") model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed[,-8], y = titanic_imputed[,8], verbose = FALSE) cp_glm <- ceteris_paribus(explain_titanic_glm, titanic_imputed[1,]) cp_glm library("randomForest") model_titanic_rf <- randomForest(survived ~., data = titanic_imputed) explain_titanic_rf <- explain(model_titanic_rf, data = titanic_imputed[,-8], y = titanic_imputed[,8], label = "Random Forest v7", verbose = FALSE) cp_rf <- ceteris_paribus(explain_titanic_rf, titanic_imputed[1,]) cp_rf plot(cp_glm, cp_rf, variables = "age") plot(cp_glm, cp_rf, variable_type='categorical', categorical_type = 'profiles') plot(cp_glm, cp_rf, variable_type='categorical', categorical_type = 'lines') plot(cp_glm, cp_rf, variable_type='categorical', categorical_type = 'bars') plot(cp_glm) plot(cp_rf, color = '_ids_') plot(cp_rf, color = '_label_') cp_glm2 <- ceteris_paribus(explain_titanic_glm, titanic_imputed[4,]) cp_glm2 plot(cp_glm2, cp_glm, color = 'gender') plot(cp_glm2, cp_glm, variable_type = 'categorical', color="_ids_") plot(cp_glm2, cp_glm, variable_type = 'categorical', color="_ids_", categorical_type = 'bars') plot(cp_glm2, cp_glm, variable_type = 'categorical', color="_ids_", categorical_type = 'lines')
thanks
fixes #125