Closed wangshankun closed 2 years ago
https://github.com/ModelTC/United-Perception/tree/main/configs/quant/det https://github.com/ModelTC/United-Perception/tree/main/configs/quant/det
Here are configs for the FRCNN and RetinaNet, with which you can easily re-produce qdrop/brecq/adaround on detection task via the united-perception framework.
We did not do PTQ on SSD, you can try it out just like the other cls networks.
On Jul 8, 2022, at 17:59, sandy @.***> wrote:
From QDROP paper,i notice the benchmark result include Faster RCNN; https://user-images.githubusercontent.com/3970271/177967270-99e64612-3384-46bb-b4db-d2fbb1356067.png Could you provide this examples?
In addition, it's best to provide PTQ of SSD,another import object detection network;
— Reply to this email directly, view it on GitHub https://github.com/ModelTC/MQBench/issues/134, or unsubscribe https://github.com/notifications/unsubscribe-auth/AK556VAE42MBBP4FI7ADYDLVS73WRANCNFSM53AOELFQ. You are receiving this because you are subscribed to this thread.
@PannenetsF 感谢及时答复; 我的理解检测模型的ptq不需要train会比给出的sample config要简单不少,但是检测模型的ptq没办法直接比对cls网络;因为网络的neck部分是需要做处理的;
我看工具链team在B站视频里面介绍要配合EOD的代码,注册submodule···看起来还是很麻烦的
理解部分可以说的详细一点,有点不明白;
注册的话还是比较简单,和正常搭建网络工作量差别不大。
我看分析了你给我的链接, https://github.com/ModelTC/United-Perception/blob/main/configs/quant/det/yolox/yolox_fpga_quant_vitis_qat.yaml 这是检测网络的qat,有点复杂,以至于我没有能力从这个config里面摘录出yolox的ptq
可以参考同目录下的ptq config
可以参考同目录下的ptq config
@PannenetsF 有det系列模型的 ptq config参考吗?
https://github.com/ModelTC/United-Perception/tree/main/configs/quant/det
EOD自己给的例子,config中的quant_ptq是不支持的
From QDROP paper,i notice the benchmark result include Faster RCNN;
Could you provide this examples?
In addition, it's best to provide PTQ of SSD,another import object detection network;