Closed RedHandLM closed 2 years ago
I've produce a minimal code snippets
import torch
from torchvision.models import resnet18
from mqbench.prepare_by_platform import BackendType, prepare_by_platform
class model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3,3,3)
self.conv2 = torch.nn.Conv2d(3,3,3)
self.conv3 = torch.nn.Conv2d(3,3,3)
def forward(self, x):
data = x['img']
x.update({'conv1': self.conv1(data)})
x.update({'conv2': self.conv2(data)})
x.update({'conv3': self.conv3(data)})
return x
test_model = model()
test_model = prepare_by_platform(test_model, BackendType.Tengine_u8)
print(test_model)
test_model({'img': torch.rand(1,3,224,224)})
And I fixed it by https://github.com/PannenetsF/MQBench/tree/tu8
I wonder if this fix the issue, so please provide the print(model.code)
's output after prepare_by_platform
.
No module named 'petrel_client'
init petrel failed
2022-08-01 10:37:35,210-rk0-normalize.py#44:[1;33mimport error No module named 'msbench'; If you need Msbench to prune model, you should add Msbench to this project. Or just ignore this error.[0m
No module named 'spring_aux'
2022-08-01 10:37:35,702-rk0-spconv_backbone.py#17:[1;33mimport error No module named 'spconv'; If you need spconv, you should install spconv !!!. Or just ignore this error[0m
2022-08-01 10:37:35,872-rk0-launch.py#86:Rank 0 initialization finished.
2022-08-01 10:37:35,882-rk0-launch.py#86:Rank 1 initialization finished.
2022-08-01 10:37:35,890-rk0-launch.py#86:Rank 3 initialization finished.
2022-08-01 10:37:35,891-rk0-launch.py#86:Rank 2 initialization finished.
node memory info before build {'node_mem_total': 125.752, 'node_mem_used': 24.171, 'node_mem_used_percent': 19.9, 'node_swap_mem_total': 0.0, 'node_swap_mem_used_percent': 0.0}
2022-08-01 10:37:42,970-rk0-base_runner.py#228:world size:4
2022-08-01 10:37:43,113-rk0-base_runner.py#274:current git version 0.2.0_github-8-gbe6a433
2022-08-01 10:37:43,357-rk0-base_runner.py#177:build train:train done
2022-08-01 10:37:43,389-rk0-data_builder.py#46:[1;33mWe use dist_test instead of dist for test[0m
2022-08-01 10:37:43,389-rk0-base_runner.py#177:build test:test done
QuantModelHelper(
(backbone_neck_roi_head): ModelHelper(
(backbone): CSPDarknet(
(stem): Focus(
(space2depth): Space2Depth()
(conv_block): ConvBnAct(
(conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(dark2): Sequential(
(0): ConvBnAct(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
)
(dark3): Sequential(
(0): ConvBnAct(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
)
(dark4): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
)
(dark5): Sequential(
(0): ConvBnAct(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): SPP(
(conv_block1): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv_block2): ConvBnAct(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(pooling_blocks): ModuleList(
(0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
(1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
(2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
)
)
(2): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
)
)
(neck): YoloxPAFPN(
(lateral_conv0): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_p4): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(reduce_conv1): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_p3): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(bu_conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_n3): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(bu_conv1): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_n4): CSPLayer(
(conv1): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv3): ConvBnAct(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(conv1): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(conv2): ConvBnAct(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
)
(roi_head): YoloXHead(
(cls_convs): ModuleList(
(0): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
(reg_convs): ModuleList(
(0): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Sequential(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
(cls_preds): ModuleList(
(0): Conv2d(128, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 12, kernel_size=(1, 1), stride=(1, 1))
)
(reg_preds): ModuleList(
(0): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
)
(obj_preds): ModuleList(
(0): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
)
(stems): ModuleList(
(0): ConvBnAct(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(1): ConvBnAct(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(2): ConvBnAct(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(post_process): ModelHelper(
(post_process): IOUPostProcess(
(cls_loss): QualityFocalLoss()
(iou_branch_loss): SigmoidCrossEntropyLoss()
)
)
)
['backbone_neck_roi_head']
{'backbone': 'backbone_neck_roi_head', 'neck': 'backbone_neck_roi_head', 'roi_head': 'backbone_neck_roi_head', 'post_process': 'post_process'}
2022-08-01 10:37:44,637-rk0-base_runner.py#295:build hooks done
2022-08-01 10:37:44,637-rk0-saver_helper.py#60:[1;33mNot found any valid checkpoint yet[0m
2022-08-01 10:37:44,637-rk0-saver_helper.py#63:[1;33mLoad checkpoint from /data/lsc/United-Perception/train_config/pretrain/300_65_ckpt_best.pth[0m
================strict False
================strict False
================strict False
[MQBENCH] INFO: Quantize model Scheme: BackendType.Tengine_u8 Mode: Training
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Quantize model Scheme: BackendType.Tengine_u8 Mode: Training
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Quantize model Scheme: BackendType.Tengine_u8 Mode: Training
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
================strict False
2022-08-01 10:37:46,990-rk0-quant_runner.py#126:prepare quantize model
[MQBENCH] INFO: Quantize model Scheme: BackendType.Tengine_u8 Mode: Training
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: FixedFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Replace module to qat module.
[MQBENCH] INFO: Replace module to qat module.
[MQBENCH] INFO: Replace module to qat module.
[MQBENCH] INFO: Replace module to qat module.
[MQBENCH] INFO: Insert act quant backbone_stem_space2depth_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_space2depth_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_space2depth_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_12_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_12_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_12_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_13_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_13_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_13_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_space2depth_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_3_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_5_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_4_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_6_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_7_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_12_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant add_11_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant cat_13_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant input_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant input_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_8_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant input_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_9_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant getitem_10_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_act_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_stem_conv_block_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark2_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark3_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark4_1_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant backbone_dark5_2_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_lateral_conv0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_reduce_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant interpolate_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_p3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n3_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_bu_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant neck_c3_n4_conv3_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_0_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_0_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_1_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_1_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_stems_2_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_0_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_convs_2_1_conv_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_cls_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_reg_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant roi_head_obj_preds_2_post_act_fake_quantizer
[MQBENCH] INFO: Insert act quant input_1_post_act_fake_quantizer
GraphModule(
(backbone): Module(
(stem): Module(
(space2depth): Space2Depth()
(conv_block): Module(
(conv): ConvFreezebn2d(
12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(dark2): Module(
(0): Module(
(conv): ConvFreezebn2d(
32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(dark3): Module(
(0): Module(
(conv): ConvFreezebn2d(
64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(1): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(2): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(dark4): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(1): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(2): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(dark5): Module(
(0): Module(
(conv): ConvFreezebn2d(
256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv_block1): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(pooling_blocks): Module(
(0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
(1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
(2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
)
(conv_block2): Module(
(conv): ConvFreezebn2d(
1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(2): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
)
(neck): Module(
(lateral_conv0): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(C3_p4): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(reduce_conv1): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(C3_p3): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(bu_conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(C3_n3): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(bu_conv1): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(C3_n4): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(m): Module(
(0): Module(
(conv1): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(conv2): Module(
(conv): ConvFreezebn2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(conv3): Module(
(conv): ConvFreezebn2d(
512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(roi_head): Module(
(stems): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(2): Module(
(conv): ConvFreezebn2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(cls_convs): Module(
(0): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(1): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(2): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(reg_convs): Module(
(0): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(1): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
(2): Module(
(0): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
(1): Module(
(conv): ConvFreezebn2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(bn): FrozenBatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(act): SiLU()
)
)
)
(cls_preds): Module(
(0): Conv2d(
128, 12, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(1): Conv2d(
128, 12, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(2): Conv2d(
128, 12, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
)
(reg_preds): Module(
(0): Conv2d(
128, 4, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(1): Conv2d(
128, 4, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(2): Conv2d(
128, 4, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
)
(obj_preds): Module(
(0): Conv2d(
128, 1, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(1): Conv2d(
128, 1, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
(2): Conv2d(
128, 1, kernel_size=(1, 1), stride=(1, 1)
(weight_fake_quant): FixedFakeQuantize(
fake_quant_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), observer_enabled=tensor([1], device='cuda:0', dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.], device='cuda:0'), zero_point=tensor([0], device='cuda:0', dtype=torch.int32)
(activation_post_process): MinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
)
)
(backbone_stem_space2depth_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_stem_conv_block_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_3_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_4_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_5_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_6_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_7_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_3_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_conv_block1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_4_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_conv_block2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_5_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(getitem_4_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_lateral_conv0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_6_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_8_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_7_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_reduce_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_8_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_9_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_9_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_10_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_10_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_11_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv3_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_12_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(add_11_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_conv2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(cat_13_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(getitem_8_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_0_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_0_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_0_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_0_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(getitem_9_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_1_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_1_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_1_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_1_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(getitem_10_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_2_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_2_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_2_0_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_2_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_2_1_act_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_stem_conv_block_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark2_1_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark3_1_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark4_1_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(backbone_dark5_2_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_lateral_conv0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(interpolate_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p4_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_reduce_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(interpolate_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_p3_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_bu_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n3_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_bu_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(neck_c3_n4_conv3_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_0_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_0_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_0_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_0_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_preds_0_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_preds_0_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_obj_preds_0_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_1_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_1_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_1_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_1_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_preds_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_preds_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_obj_preds_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_stems_2_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_2_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_convs_2_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_2_0_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_convs_2_1_conv_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_cls_preds_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_reg_preds_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(roi_head_obj_preds_2_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
(input_1_post_act_fake_quantizer): FixedFakeQuantize(
fake_quant_enabled=tensor([1], dtype=torch.uint8), observer_enabled=tensor([1], dtype=torch.uint8), quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, ch_axis=-1, scale=tensor([1.]), zero_point=tensor([0], dtype=torch.int32)
(activation_post_process): EMAMinMaxObserver(min_val=inf, max_val=-inf ch_axis=-1 pot=False)
)
)
import torch
def forward(self, input):
input_1 = input
input_1_post_act_fake_quantizer = self.input_1_post_act_fake_quantizer(input_1); input_1 = None
getitem = input_1_post_act_fake_quantizer['image']
backbone_stem_space2depth = self.backbone.stem.space2depth(getitem); getitem = None
backbone_stem_space2depth_post_act_fake_quantizer = self.backbone_stem_space2depth_post_act_fake_quantizer(backbone_stem_space2depth); backbone_stem_space2depth = None
backbone_stem_conv_block_conv = self.backbone.stem.conv_block.conv(backbone_stem_space2depth_post_act_fake_quantizer); backbone_stem_space2depth_post_act_fake_quantizer = None
backbone_stem_conv_block_conv_post_act_fake_quantizer = self.backbone_stem_conv_block_conv_post_act_fake_quantizer(backbone_stem_conv_block_conv); backbone_stem_conv_block_conv = None
backbone_stem_conv_block_act = self.backbone.stem.conv_block.act(backbone_stem_conv_block_conv_post_act_fake_quantizer); backbone_stem_conv_block_conv_post_act_fake_quantizer = None
backbone_stem_conv_block_act_post_act_fake_quantizer = self.backbone_stem_conv_block_act_post_act_fake_quantizer(backbone_stem_conv_block_act); backbone_stem_conv_block_act = None
backbone_dark2_0_conv = getattr(self.backbone.dark2, "0").conv(backbone_stem_conv_block_act_post_act_fake_quantizer); backbone_stem_conv_block_act_post_act_fake_quantizer = None
backbone_dark2_0_conv_post_act_fake_quantizer = self.backbone_dark2_0_conv_post_act_fake_quantizer(backbone_dark2_0_conv); backbone_dark2_0_conv = None
backbone_dark2_0_act = getattr(self.backbone.dark2, "0").act(backbone_dark2_0_conv_post_act_fake_quantizer); backbone_dark2_0_conv_post_act_fake_quantizer = None
backbone_dark2_0_act_post_act_fake_quantizer = self.backbone_dark2_0_act_post_act_fake_quantizer(backbone_dark2_0_act); backbone_dark2_0_act = None
backbone_dark2_1_conv1_conv = getattr(self.backbone.dark2, "1").conv1.conv(backbone_dark2_0_act_post_act_fake_quantizer)
backbone_dark2_1_conv1_conv_post_act_fake_quantizer = self.backbone_dark2_1_conv1_conv_post_act_fake_quantizer(backbone_dark2_1_conv1_conv); backbone_dark2_1_conv1_conv = None
backbone_dark2_1_conv1_act = getattr(self.backbone.dark2, "1").conv1.act(backbone_dark2_1_conv1_conv_post_act_fake_quantizer); backbone_dark2_1_conv1_conv_post_act_fake_quantizer = None
backbone_dark2_1_conv1_act_post_act_fake_quantizer = self.backbone_dark2_1_conv1_act_post_act_fake_quantizer(backbone_dark2_1_conv1_act); backbone_dark2_1_conv1_act = None
backbone_dark2_1_conv2_conv = getattr(self.backbone.dark2, "1").conv2.conv(backbone_dark2_0_act_post_act_fake_quantizer); backbone_dark2_0_act_post_act_fake_quantizer = None
backbone_dark2_1_conv2_conv_post_act_fake_quantizer = self.backbone_dark2_1_conv2_conv_post_act_fake_quantizer(backbone_dark2_1_conv2_conv); backbone_dark2_1_conv2_conv = None
backbone_dark2_1_conv2_act = getattr(self.backbone.dark2, "1").conv2.act(backbone_dark2_1_conv2_conv_post_act_fake_quantizer); backbone_dark2_1_conv2_conv_post_act_fake_quantizer = None
backbone_dark2_1_conv2_act_post_act_fake_quantizer = self.backbone_dark2_1_conv2_act_post_act_fake_quantizer(backbone_dark2_1_conv2_act); backbone_dark2_1_conv2_act = None
backbone_dark2_1_m_0_conv1_conv = getattr(getattr(self.backbone.dark2, "1").m, "0").conv1.conv(backbone_dark2_1_conv1_act_post_act_fake_quantizer)
backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer = self.backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer(backbone_dark2_1_m_0_conv1_conv); backbone_dark2_1_m_0_conv1_conv = None
backbone_dark2_1_m_0_conv1_act = getattr(getattr(self.backbone.dark2, "1").m, "0").conv1.act(backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer); backbone_dark2_1_m_0_conv1_conv_post_act_fake_quantizer = None
backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer = self.backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer(backbone_dark2_1_m_0_conv1_act); backbone_dark2_1_m_0_conv1_act = None
backbone_dark2_1_m_0_conv2_conv = getattr(getattr(self.backbone.dark2, "1").m, "0").conv2.conv(backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer); backbone_dark2_1_m_0_conv1_act_post_act_fake_quantizer = None
backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer = self.backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer(backbone_dark2_1_m_0_conv2_conv); backbone_dark2_1_m_0_conv2_conv = None
backbone_dark2_1_m_0_conv2_act = getattr(getattr(self.backbone.dark2, "1").m, "0").conv2.act(backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer); backbone_dark2_1_m_0_conv2_conv_post_act_fake_quantizer = None
backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer = self.backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer(backbone_dark2_1_m_0_conv2_act); backbone_dark2_1_m_0_conv2_act = None
add_1 = backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer + backbone_dark2_1_conv1_act_post_act_fake_quantizer; backbone_dark2_1_m_0_conv2_act_post_act_fake_quantizer = backbone_dark2_1_conv1_act_post_act_fake_quantizer = None
add_1_post_act_fake_quantizer = self.add_1_post_act_fake_quantizer(add_1); add_1 = None
cat_1 = torch.cat((add_1_post_act_fake_quantizer, backbone_dark2_1_conv2_act_post_act_fake_quantizer), dim = 1); add_1_post_act_fake_quantizer = backbone_dark2_1_conv2_act_post_act_fake_quantizer = None
cat_1_post_act_fake_quantizer = self.cat_1_post_act_fake_quantizer(cat_1); cat_1 = None
backbone_dark2_1_conv3_conv = getattr(self.backbone.dark2, "1").conv3.conv(cat_1_post_act_fake_quantizer); cat_1_post_act_fake_quantizer = None
backbone_dark2_1_conv3_conv_post_act_fake_quantizer = self.backbone_dark2_1_conv3_conv_post_act_fake_quantizer(backbone_dark2_1_conv3_conv); backbone_dark2_1_conv3_conv = None
backbone_dark2_1_conv3_act = getattr(self.backbone.dark2, "1").conv3.act(backbone_dark2_1_conv3_conv_post_act_fake_quantizer); backbone_dark2_1_conv3_conv_post_act_fake_quantizer = None
backbone_dark2_1_conv3_act_post_act_fake_quantizer = self.backbone_dark2_1_conv3_act_post_act_fake_quantizer(backbone_dark2_1_conv3_act); backbone_dark2_1_conv3_act = None
backbone_dark3_0_conv = getattr(self.backbone.dark3, "0").conv(backbone_dark2_1_conv3_act_post_act_fake_quantizer); backbone_dark2_1_conv3_act_post_act_fake_quantizer = None
backbone_dark3_0_conv_post_act_fake_quantizer = self.backbone_dark3_0_conv_post_act_fake_quantizer(backbone_dark3_0_conv); backbone_dark3_0_conv = None
backbone_dark3_0_act = getattr(self.backbone.dark3, "0").act(backbone_dark3_0_conv_post_act_fake_quantizer); backbone_dark3_0_conv_post_act_fake_quantizer = None
backbone_dark3_0_act_post_act_fake_quantizer = self.backbone_dark3_0_act_post_act_fake_quantizer(backbone_dark3_0_act); backbone_dark3_0_act = None
backbone_dark3_1_conv1_conv = getattr(self.backbone.dark3, "1").conv1.conv(backbone_dark3_0_act_post_act_fake_quantizer)
backbone_dark3_1_conv1_conv_post_act_fake_quantizer = self.backbone_dark3_1_conv1_conv_post_act_fake_quantizer(backbone_dark3_1_conv1_conv); backbone_dark3_1_conv1_conv = None
backbone_dark3_1_conv1_act = getattr(self.backbone.dark3, "1").conv1.act(backbone_dark3_1_conv1_conv_post_act_fake_quantizer); backbone_dark3_1_conv1_conv_post_act_fake_quantizer = None
backbone_dark3_1_conv1_act_post_act_fake_quantizer = self.backbone_dark3_1_conv1_act_post_act_fake_quantizer(backbone_dark3_1_conv1_act); backbone_dark3_1_conv1_act = None
backbone_dark3_1_conv2_conv = getattr(self.backbone.dark3, "1").conv2.conv(backbone_dark3_0_act_post_act_fake_quantizer); backbone_dark3_0_act_post_act_fake_quantizer = None
backbone_dark3_1_conv2_conv_post_act_fake_quantizer = self.backbone_dark3_1_conv2_conv_post_act_fake_quantizer(backbone_dark3_1_conv2_conv); backbone_dark3_1_conv2_conv = None
backbone_dark3_1_conv2_act = getattr(self.backbone.dark3, "1").conv2.act(backbone_dark3_1_conv2_conv_post_act_fake_quantizer); backbone_dark3_1_conv2_conv_post_act_fake_quantizer = None
backbone_dark3_1_conv2_act_post_act_fake_quantizer = self.backbone_dark3_1_conv2_act_post_act_fake_quantizer(backbone_dark3_1_conv2_act); backbone_dark3_1_conv2_act = None
backbone_dark3_1_m_0_conv1_conv = getattr(getattr(self.backbone.dark3, "1").m, "0").conv1.conv(backbone_dark3_1_conv1_act_post_act_fake_quantizer)
backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer(backbone_dark3_1_m_0_conv1_conv); backbone_dark3_1_m_0_conv1_conv = None
backbone_dark3_1_m_0_conv1_act = getattr(getattr(self.backbone.dark3, "1").m, "0").conv1.act(backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer); backbone_dark3_1_m_0_conv1_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer = self.backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer(backbone_dark3_1_m_0_conv1_act); backbone_dark3_1_m_0_conv1_act = None
backbone_dark3_1_m_0_conv2_conv = getattr(getattr(self.backbone.dark3, "1").m, "0").conv2.conv(backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer); backbone_dark3_1_m_0_conv1_act_post_act_fake_quantizer = None
backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer(backbone_dark3_1_m_0_conv2_conv); backbone_dark3_1_m_0_conv2_conv = None
backbone_dark3_1_m_0_conv2_act = getattr(getattr(self.backbone.dark3, "1").m, "0").conv2.act(backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer); backbone_dark3_1_m_0_conv2_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer = self.backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer(backbone_dark3_1_m_0_conv2_act); backbone_dark3_1_m_0_conv2_act = None
add_2 = backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer + backbone_dark3_1_conv1_act_post_act_fake_quantizer; backbone_dark3_1_m_0_conv2_act_post_act_fake_quantizer = backbone_dark3_1_conv1_act_post_act_fake_quantizer = None
add_2_post_act_fake_quantizer = self.add_2_post_act_fake_quantizer(add_2); add_2 = None
backbone_dark3_1_m_1_conv1_conv = getattr(getattr(self.backbone.dark3, "1").m, "1").conv1.conv(add_2_post_act_fake_quantizer)
backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer(backbone_dark3_1_m_1_conv1_conv); backbone_dark3_1_m_1_conv1_conv = None
backbone_dark3_1_m_1_conv1_act = getattr(getattr(self.backbone.dark3, "1").m, "1").conv1.act(backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer); backbone_dark3_1_m_1_conv1_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer = self.backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer(backbone_dark3_1_m_1_conv1_act); backbone_dark3_1_m_1_conv1_act = None
backbone_dark3_1_m_1_conv2_conv = getattr(getattr(self.backbone.dark3, "1").m, "1").conv2.conv(backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer); backbone_dark3_1_m_1_conv1_act_post_act_fake_quantizer = None
backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer(backbone_dark3_1_m_1_conv2_conv); backbone_dark3_1_m_1_conv2_conv = None
backbone_dark3_1_m_1_conv2_act = getattr(getattr(self.backbone.dark3, "1").m, "1").conv2.act(backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer); backbone_dark3_1_m_1_conv2_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer = self.backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer(backbone_dark3_1_m_1_conv2_act); backbone_dark3_1_m_1_conv2_act = None
add_3 = backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer + add_2_post_act_fake_quantizer; backbone_dark3_1_m_1_conv2_act_post_act_fake_quantizer = add_2_post_act_fake_quantizer = None
add_3_post_act_fake_quantizer = self.add_3_post_act_fake_quantizer(add_3); add_3 = None
backbone_dark3_1_m_2_conv1_conv = getattr(getattr(self.backbone.dark3, "1").m, "2").conv1.conv(add_3_post_act_fake_quantizer)
backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer(backbone_dark3_1_m_2_conv1_conv); backbone_dark3_1_m_2_conv1_conv = None
backbone_dark3_1_m_2_conv1_act = getattr(getattr(self.backbone.dark3, "1").m, "2").conv1.act(backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer); backbone_dark3_1_m_2_conv1_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer = self.backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer(backbone_dark3_1_m_2_conv1_act); backbone_dark3_1_m_2_conv1_act = None
backbone_dark3_1_m_2_conv2_conv = getattr(getattr(self.backbone.dark3, "1").m, "2").conv2.conv(backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer); backbone_dark3_1_m_2_conv1_act_post_act_fake_quantizer = None
backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer = self.backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer(backbone_dark3_1_m_2_conv2_conv); backbone_dark3_1_m_2_conv2_conv = None
backbone_dark3_1_m_2_conv2_act = getattr(getattr(self.backbone.dark3, "1").m, "2").conv2.act(backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer); backbone_dark3_1_m_2_conv2_conv_post_act_fake_quantizer = None
backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer = self.backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer(backbone_dark3_1_m_2_conv2_act); backbone_dark3_1_m_2_conv2_act = None
add_4 = backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer + add_3_post_act_fake_quantizer; backbone_dark3_1_m_2_conv2_act_post_act_fake_quantizer = add_3_post_act_fake_quantizer = None
add_4_post_act_fake_quantizer = self.add_4_post_act_fake_quantizer(add_4); add_4 = None
cat_2 = torch.cat((add_4_post_act_fake_quantizer, backbone_dark3_1_conv2_act_post_act_fake_quantizer), dim = 1); add_4_post_act_fake_quantizer = backbone_dark3_1_conv2_act_post_act_fake_quantizer = None
cat_2_post_act_fake_quantizer = self.cat_2_post_act_fake_quantizer(cat_2); cat_2 = None
backbone_dark3_1_conv3_conv = getattr(self.backbone.dark3, "1").conv3.conv(cat_2_post_act_fake_quantizer); cat_2_post_act_fake_quantizer = None
backbone_dark3_1_conv3_conv_post_act_fake_quantizer = self.backbone_dark3_1_conv3_conv_post_act_fake_quantizer(backbone_dark3_1_conv3_conv); backbone_dark3_1_conv3_conv = None
backbone_dark3_1_conv3_act = getattr(self.backbone.dark3, "1").conv3.act(backbone_dark3_1_conv3_conv_post_act_fake_quantizer); backbone_dark3_1_conv3_conv_post_act_fake_quantizer = None
backbone_dark3_1_conv3_act_post_act_fake_quantizer = self.backbone_dark3_1_conv3_act_post_act_fake_quantizer(backbone_dark3_1_conv3_act); backbone_dark3_1_conv3_act = None
backbone_dark4_0_conv = getattr(self.backbone.dark4, "0").conv(backbone_dark3_1_conv3_act_post_act_fake_quantizer)
backbone_dark4_0_conv_post_act_fake_quantizer = self.backbone_dark4_0_conv_post_act_fake_quantizer(backbone_dark4_0_conv); backbone_dark4_0_conv = None
backbone_dark4_0_act = getattr(self.backbone.dark4, "0").act(backbone_dark4_0_conv_post_act_fake_quantizer); backbone_dark4_0_conv_post_act_fake_quantizer = None
backbone_dark4_0_act_post_act_fake_quantizer = self.backbone_dark4_0_act_post_act_fake_quantizer(backbone_dark4_0_act); backbone_dark4_0_act = None
backbone_dark4_1_conv1_conv = getattr(self.backbone.dark4, "1").conv1.conv(backbone_dark4_0_act_post_act_fake_quantizer)
backbone_dark4_1_conv1_conv_post_act_fake_quantizer = self.backbone_dark4_1_conv1_conv_post_act_fake_quantizer(backbone_dark4_1_conv1_conv); backbone_dark4_1_conv1_conv = None
backbone_dark4_1_conv1_act = getattr(self.backbone.dark4, "1").conv1.act(backbone_dark4_1_conv1_conv_post_act_fake_quantizer); backbone_dark4_1_conv1_conv_post_act_fake_quantizer = None
backbone_dark4_1_conv1_act_post_act_fake_quantizer = self.backbone_dark4_1_conv1_act_post_act_fake_quantizer(backbone_dark4_1_conv1_act); backbone_dark4_1_conv1_act = None
backbone_dark4_1_conv2_conv = getattr(self.backbone.dark4, "1").conv2.conv(backbone_dark4_0_act_post_act_fake_quantizer); backbone_dark4_0_act_post_act_fake_quantizer = None
backbone_dark4_1_conv2_conv_post_act_fake_quantizer = self.backbone_dark4_1_conv2_conv_post_act_fake_quantizer(backbone_dark4_1_conv2_conv); backbone_dark4_1_conv2_conv = None
backbone_dark4_1_conv2_act = getattr(self.backbone.dark4, "1").conv2.act(backbone_dark4_1_conv2_conv_post_act_fake_quantizer); backbone_dark4_1_conv2_conv_post_act_fake_quantizer = None
backbone_dark4_1_conv2_act_post_act_fake_quantizer = self.backbone_dark4_1_conv2_act_post_act_fake_quantizer(backbone_dark4_1_conv2_act); backbone_dark4_1_conv2_act = None
backbone_dark4_1_m_0_conv1_conv = getattr(getattr(self.backbone.dark4, "1").m, "0").conv1.conv(backbone_dark4_1_conv1_act_post_act_fake_quantizer)
backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer(backbone_dark4_1_m_0_conv1_conv); backbone_dark4_1_m_0_conv1_conv = None
backbone_dark4_1_m_0_conv1_act = getattr(getattr(self.backbone.dark4, "1").m, "0").conv1.act(backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer); backbone_dark4_1_m_0_conv1_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer = self.backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer(backbone_dark4_1_m_0_conv1_act); backbone_dark4_1_m_0_conv1_act = None
backbone_dark4_1_m_0_conv2_conv = getattr(getattr(self.backbone.dark4, "1").m, "0").conv2.conv(backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer); backbone_dark4_1_m_0_conv1_act_post_act_fake_quantizer = None
backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer(backbone_dark4_1_m_0_conv2_conv); backbone_dark4_1_m_0_conv2_conv = None
backbone_dark4_1_m_0_conv2_act = getattr(getattr(self.backbone.dark4, "1").m, "0").conv2.act(backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer); backbone_dark4_1_m_0_conv2_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer = self.backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer(backbone_dark4_1_m_0_conv2_act); backbone_dark4_1_m_0_conv2_act = None
add_5 = backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer + backbone_dark4_1_conv1_act_post_act_fake_quantizer; backbone_dark4_1_m_0_conv2_act_post_act_fake_quantizer = backbone_dark4_1_conv1_act_post_act_fake_quantizer = None
add_5_post_act_fake_quantizer = self.add_5_post_act_fake_quantizer(add_5); add_5 = None
backbone_dark4_1_m_1_conv1_conv = getattr(getattr(self.backbone.dark4, "1").m, "1").conv1.conv(add_5_post_act_fake_quantizer)
backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer(backbone_dark4_1_m_1_conv1_conv); backbone_dark4_1_m_1_conv1_conv = None
backbone_dark4_1_m_1_conv1_act = getattr(getattr(self.backbone.dark4, "1").m, "1").conv1.act(backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer); backbone_dark4_1_m_1_conv1_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer = self.backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer(backbone_dark4_1_m_1_conv1_act); backbone_dark4_1_m_1_conv1_act = None
backbone_dark4_1_m_1_conv2_conv = getattr(getattr(self.backbone.dark4, "1").m, "1").conv2.conv(backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer); backbone_dark4_1_m_1_conv1_act_post_act_fake_quantizer = None
backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer(backbone_dark4_1_m_1_conv2_conv); backbone_dark4_1_m_1_conv2_conv = None
backbone_dark4_1_m_1_conv2_act = getattr(getattr(self.backbone.dark4, "1").m, "1").conv2.act(backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer); backbone_dark4_1_m_1_conv2_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer = self.backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer(backbone_dark4_1_m_1_conv2_act); backbone_dark4_1_m_1_conv2_act = None
add_6 = backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer + add_5_post_act_fake_quantizer; backbone_dark4_1_m_1_conv2_act_post_act_fake_quantizer = add_5_post_act_fake_quantizer = None
add_6_post_act_fake_quantizer = self.add_6_post_act_fake_quantizer(add_6); add_6 = None
backbone_dark4_1_m_2_conv1_conv = getattr(getattr(self.backbone.dark4, "1").m, "2").conv1.conv(add_6_post_act_fake_quantizer)
backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer(backbone_dark4_1_m_2_conv1_conv); backbone_dark4_1_m_2_conv1_conv = None
backbone_dark4_1_m_2_conv1_act = getattr(getattr(self.backbone.dark4, "1").m, "2").conv1.act(backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer); backbone_dark4_1_m_2_conv1_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer = self.backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer(backbone_dark4_1_m_2_conv1_act); backbone_dark4_1_m_2_conv1_act = None
backbone_dark4_1_m_2_conv2_conv = getattr(getattr(self.backbone.dark4, "1").m, "2").conv2.conv(backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer); backbone_dark4_1_m_2_conv1_act_post_act_fake_quantizer = None
backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer = self.backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer(backbone_dark4_1_m_2_conv2_conv); backbone_dark4_1_m_2_conv2_conv = None
backbone_dark4_1_m_2_conv2_act = getattr(getattr(self.backbone.dark4, "1").m, "2").conv2.act(backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer); backbone_dark4_1_m_2_conv2_conv_post_act_fake_quantizer = None
backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer = self.backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer(backbone_dark4_1_m_2_conv2_act); backbone_dark4_1_m_2_conv2_act = None
add_7 = backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer + add_6_post_act_fake_quantizer; backbone_dark4_1_m_2_conv2_act_post_act_fake_quantizer = add_6_post_act_fake_quantizer = None
add_7_post_act_fake_quantizer = self.add_7_post_act_fake_quantizer(add_7); add_7 = None
cat_3 = torch.cat((add_7_post_act_fake_quantizer, backbone_dark4_1_conv2_act_post_act_fake_quantizer), dim = 1); add_7_post_act_fake_quantizer = backbone_dark4_1_conv2_act_post_act_fake_quantizer = None
cat_3_post_act_fake_quantizer = self.cat_3_post_act_fake_quantizer(cat_3); cat_3 = None
backbone_dark4_1_conv3_conv = getattr(self.backbone.dark4, "1").conv3.conv(cat_3_post_act_fake_quantizer); cat_3_post_act_fake_quantizer = None
backbone_dark4_1_conv3_conv_post_act_fake_quantizer = self.backbone_dark4_1_conv3_conv_post_act_fake_quantizer(backbone_dark4_1_conv3_conv); backbone_dark4_1_conv3_conv = None
backbone_dark4_1_conv3_act = getattr(self.backbone.dark4, "1").conv3.act(backbone_dark4_1_conv3_conv_post_act_fake_quantizer); backbone_dark4_1_conv3_conv_post_act_fake_quantizer = None
backbone_dark4_1_conv3_act_post_act_fake_quantizer = self.backbone_dark4_1_conv3_act_post_act_fake_quantizer(backbone_dark4_1_conv3_act); backbone_dark4_1_conv3_act = None
backbone_dark5_0_conv = getattr(self.backbone.dark5, "0").conv(backbone_dark4_1_conv3_act_post_act_fake_quantizer)
backbone_dark5_0_conv_post_act_fake_quantizer = self.backbone_dark5_0_conv_post_act_fake_quantizer(backbone_dark5_0_conv); backbone_dark5_0_conv = None
backbone_dark5_0_act = getattr(self.backbone.dark5, "0").act(backbone_dark5_0_conv_post_act_fake_quantizer); backbone_dark5_0_conv_post_act_fake_quantizer = None
backbone_dark5_0_act_post_act_fake_quantizer = self.backbone_dark5_0_act_post_act_fake_quantizer(backbone_dark5_0_act); backbone_dark5_0_act = None
backbone_dark5_1_conv_block1_conv = getattr(self.backbone.dark5, "1").conv_block1.conv(backbone_dark5_0_act_post_act_fake_quantizer); backbone_dark5_0_act_post_act_fake_quantizer = None
backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer = self.backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer(backbone_dark5_1_conv_block1_conv); backbone_dark5_1_conv_block1_conv = None
backbone_dark5_1_conv_block1_act = getattr(self.backbone.dark5, "1").conv_block1.act(backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer); backbone_dark5_1_conv_block1_conv_post_act_fake_quantizer = None
backbone_dark5_1_conv_block1_act_post_act_fake_quantizer = self.backbone_dark5_1_conv_block1_act_post_act_fake_quantizer(backbone_dark5_1_conv_block1_act); backbone_dark5_1_conv_block1_act = None
backbone_dark5_1_pooling_blocks_0 = getattr(getattr(self.backbone.dark5, "1").pooling_blocks, "0")(backbone_dark5_1_conv_block1_act_post_act_fake_quantizer)
backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer = self.backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer(backbone_dark5_1_pooling_blocks_0); backbone_dark5_1_pooling_blocks_0 = None
backbone_dark5_1_pooling_blocks_1 = getattr(getattr(self.backbone.dark5, "1").pooling_blocks, "1")(backbone_dark5_1_conv_block1_act_post_act_fake_quantizer)
backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer = self.backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer(backbone_dark5_1_pooling_blocks_1); backbone_dark5_1_pooling_blocks_1 = None
backbone_dark5_1_pooling_blocks_2 = getattr(getattr(self.backbone.dark5, "1").pooling_blocks, "2")(backbone_dark5_1_conv_block1_act_post_act_fake_quantizer)
backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer = self.backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer(backbone_dark5_1_pooling_blocks_2); backbone_dark5_1_pooling_blocks_2 = None
cat_4 = torch.cat([backbone_dark5_1_conv_block1_act_post_act_fake_quantizer, backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer, backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer, backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer], 1); backbone_dark5_1_conv_block1_act_post_act_fake_quantizer = backbone_dark5_1_pooling_blocks_0_post_act_fake_quantizer = backbone_dark5_1_pooling_blocks_1_post_act_fake_quantizer = backbone_dark5_1_pooling_blocks_2_post_act_fake_quantizer = None
cat_4_post_act_fake_quantizer = self.cat_4_post_act_fake_quantizer(cat_4); cat_4 = None
backbone_dark5_1_conv_block2_conv = getattr(self.backbone.dark5, "1").conv_block2.conv(cat_4_post_act_fake_quantizer); cat_4_post_act_fake_quantizer = None
backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer = self.backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer(backbone_dark5_1_conv_block2_conv); backbone_dark5_1_conv_block2_conv = None
backbone_dark5_1_conv_block2_act = getattr(self.backbone.dark5, "1").conv_block2.act(backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer); backbone_dark5_1_conv_block2_conv_post_act_fake_quantizer = None
backbone_dark5_1_conv_block2_act_post_act_fake_quantizer = self.backbone_dark5_1_conv_block2_act_post_act_fake_quantizer(backbone_dark5_1_conv_block2_act); backbone_dark5_1_conv_block2_act = None
backbone_dark5_2_conv1_conv = getattr(self.backbone.dark5, "2").conv1.conv(backbone_dark5_1_conv_block2_act_post_act_fake_quantizer)
backbone_dark5_2_conv1_conv_post_act_fake_quantizer = self.backbone_dark5_2_conv1_conv_post_act_fake_quantizer(backbone_dark5_2_conv1_conv); backbone_dark5_2_conv1_conv = None
backbone_dark5_2_conv1_act = getattr(self.backbone.dark5, "2").conv1.act(backbone_dark5_2_conv1_conv_post_act_fake_quantizer); backbone_dark5_2_conv1_conv_post_act_fake_quantizer = None
backbone_dark5_2_conv1_act_post_act_fake_quantizer = self.backbone_dark5_2_conv1_act_post_act_fake_quantizer(backbone_dark5_2_conv1_act); backbone_dark5_2_conv1_act = None
backbone_dark5_2_conv2_conv = getattr(self.backbone.dark5, "2").conv2.conv(backbone_dark5_1_conv_block2_act_post_act_fake_quantizer); backbone_dark5_1_conv_block2_act_post_act_fake_quantizer = None
backbone_dark5_2_conv2_conv_post_act_fake_quantizer = self.backbone_dark5_2_conv2_conv_post_act_fake_quantizer(backbone_dark5_2_conv2_conv); backbone_dark5_2_conv2_conv = None
backbone_dark5_2_conv2_act = getattr(self.backbone.dark5, "2").conv2.act(backbone_dark5_2_conv2_conv_post_act_fake_quantizer); backbone_dark5_2_conv2_conv_post_act_fake_quantizer = None
backbone_dark5_2_conv2_act_post_act_fake_quantizer = self.backbone_dark5_2_conv2_act_post_act_fake_quantizer(backbone_dark5_2_conv2_act); backbone_dark5_2_conv2_act = None
backbone_dark5_2_m_0_conv1_conv = getattr(getattr(self.backbone.dark5, "2").m, "0").conv1.conv(backbone_dark5_2_conv1_act_post_act_fake_quantizer); backbone_dark5_2_conv1_act_post_act_fake_quantizer = None
backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer = self.backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer(backbone_dark5_2_m_0_conv1_conv); backbone_dark5_2_m_0_conv1_conv = None
backbone_dark5_2_m_0_conv1_act = getattr(getattr(self.backbone.dark5, "2").m, "0").conv1.act(backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer); backbone_dark5_2_m_0_conv1_conv_post_act_fake_quantizer = None
backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer = self.backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer(backbone_dark5_2_m_0_conv1_act); backbone_dark5_2_m_0_conv1_act = None
backbone_dark5_2_m_0_conv2_conv = getattr(getattr(self.backbone.dark5, "2").m, "0").conv2.conv(backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer); backbone_dark5_2_m_0_conv1_act_post_act_fake_quantizer = None
backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer = self.backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer(backbone_dark5_2_m_0_conv2_conv); backbone_dark5_2_m_0_conv2_conv = None
backbone_dark5_2_m_0_conv2_act = getattr(getattr(self.backbone.dark5, "2").m, "0").conv2.act(backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer); backbone_dark5_2_m_0_conv2_conv_post_act_fake_quantizer = None
backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer = self.backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer(backbone_dark5_2_m_0_conv2_act); backbone_dark5_2_m_0_conv2_act = None
cat_5 = torch.cat((backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer, backbone_dark5_2_conv2_act_post_act_fake_quantizer), dim = 1); backbone_dark5_2_m_0_conv2_act_post_act_fake_quantizer = backbone_dark5_2_conv2_act_post_act_fake_quantizer = None
cat_5_post_act_fake_quantizer = self.cat_5_post_act_fake_quantizer(cat_5); cat_5 = None
backbone_dark5_2_conv3_conv = getattr(self.backbone.dark5, "2").conv3.conv(cat_5_post_act_fake_quantizer); cat_5_post_act_fake_quantizer = None
backbone_dark5_2_conv3_conv_post_act_fake_quantizer = self.backbone_dark5_2_conv3_conv_post_act_fake_quantizer(backbone_dark5_2_conv3_conv); backbone_dark5_2_conv3_conv = None
backbone_dark5_2_conv3_act = getattr(self.backbone.dark5, "2").conv3.act(backbone_dark5_2_conv3_conv_post_act_fake_quantizer); backbone_dark5_2_conv3_conv_post_act_fake_quantizer = None
_tensor_constant0 = self._tensor_constant0
update = input_1_post_act_fake_quantizer.update({'features': (backbone_dark3_1_conv3_act_post_act_fake_quantizer, backbone_dark4_1_conv3_act_post_act_fake_quantizer, backbone_dark5_2_conv3_act), 'strides': _tensor_constant0}); backbone_dark3_1_conv3_act_post_act_fake_quantizer = backbone_dark4_1_conv3_act_post_act_fake_quantizer = backbone_dark5_2_conv3_act = _tensor_constant0 = None
getitem_1 = input_1_post_act_fake_quantizer['features']
getitem_2 = getitem_1[0]
getitem_3 = getitem_1[1]
getitem_4 = getitem_1[2]; getitem_1 = None
getitem_4_post_act_fake_quantizer = self.getitem_4_post_act_fake_quantizer(getitem_4); getitem_4 = None
neck_lateral_conv0_conv = self.neck.lateral_conv0.conv(getitem_4_post_act_fake_quantizer); getitem_4_post_act_fake_quantizer = None
neck_lateral_conv0_conv_post_act_fake_quantizer = self.neck_lateral_conv0_conv_post_act_fake_quantizer(neck_lateral_conv0_conv); neck_lateral_conv0_conv = None
neck_lateral_conv0_act = self.neck.lateral_conv0.act(neck_lateral_conv0_conv_post_act_fake_quantizer); neck_lateral_conv0_conv_post_act_fake_quantizer = None
neck_lateral_conv0_act_post_act_fake_quantizer = self.neck_lateral_conv0_act_post_act_fake_quantizer(neck_lateral_conv0_act); neck_lateral_conv0_act = None
getattr_1 = getitem_3.shape
getitem_5 = getattr_1[slice(-2, None, None)]; getattr_1 = None
interpolate_1 = torch.nn.functional.interpolate(neck_lateral_conv0_act_post_act_fake_quantizer, size = getitem_5, scale_factor = None, mode = 'nearest', align_corners = None, recompute_scale_factor = None); getitem_5 = None
interpolate_1_post_act_fake_quantizer = self.interpolate_1_post_act_fake_quantizer(interpolate_1); interpolate_1 = None
cat_6 = torch.cat([interpolate_1_post_act_fake_quantizer, getitem_3], 1); interpolate_1_post_act_fake_quantizer = getitem_3 = None
cat_6_post_act_fake_quantizer = self.cat_6_post_act_fake_quantizer(cat_6); cat_6 = None
neck_c3_p4_conv1_conv = self.neck.C3_p4.conv1.conv(cat_6_post_act_fake_quantizer)
neck_c3_p4_conv1_conv_post_act_fake_quantizer = self.neck_c3_p4_conv1_conv_post_act_fake_quantizer(neck_c3_p4_conv1_conv); neck_c3_p4_conv1_conv = None
neck_c3_p4_conv1_act = self.neck.C3_p4.conv1.act(neck_c3_p4_conv1_conv_post_act_fake_quantizer); neck_c3_p4_conv1_conv_post_act_fake_quantizer = None
neck_c3_p4_conv1_act_post_act_fake_quantizer = self.neck_c3_p4_conv1_act_post_act_fake_quantizer(neck_c3_p4_conv1_act); neck_c3_p4_conv1_act = None
neck_c3_p4_conv2_conv = self.neck.C3_p4.conv2.conv(cat_6_post_act_fake_quantizer); cat_6_post_act_fake_quantizer = None
neck_c3_p4_conv2_conv_post_act_fake_quantizer = self.neck_c3_p4_conv2_conv_post_act_fake_quantizer(neck_c3_p4_conv2_conv); neck_c3_p4_conv2_conv = None
neck_c3_p4_conv2_act = self.neck.C3_p4.conv2.act(neck_c3_p4_conv2_conv_post_act_fake_quantizer); neck_c3_p4_conv2_conv_post_act_fake_quantizer = None
neck_c3_p4_conv2_act_post_act_fake_quantizer = self.neck_c3_p4_conv2_act_post_act_fake_quantizer(neck_c3_p4_conv2_act); neck_c3_p4_conv2_act = None
neck_c3_p4_m_0_conv1_conv = getattr(self.neck.C3_p4.m, "0").conv1.conv(neck_c3_p4_conv1_act_post_act_fake_quantizer)
neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer = self.neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer(neck_c3_p4_m_0_conv1_conv); neck_c3_p4_m_0_conv1_conv = None
neck_c3_p4_m_0_conv1_act = getattr(self.neck.C3_p4.m, "0").conv1.act(neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer); neck_c3_p4_m_0_conv1_conv_post_act_fake_quantizer = None
neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer = self.neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer(neck_c3_p4_m_0_conv1_act); neck_c3_p4_m_0_conv1_act = None
neck_c3_p4_m_0_conv2_conv = getattr(self.neck.C3_p4.m, "0").conv2.conv(neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer); neck_c3_p4_m_0_conv1_act_post_act_fake_quantizer = None
neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer = self.neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer(neck_c3_p4_m_0_conv2_conv); neck_c3_p4_m_0_conv2_conv = None
neck_c3_p4_m_0_conv2_act = getattr(self.neck.C3_p4.m, "0").conv2.act(neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer); neck_c3_p4_m_0_conv2_conv_post_act_fake_quantizer = None
neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer = self.neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer(neck_c3_p4_m_0_conv2_act); neck_c3_p4_m_0_conv2_act = None
add_8 = neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer + neck_c3_p4_conv1_act_post_act_fake_quantizer; neck_c3_p4_m_0_conv2_act_post_act_fake_quantizer = neck_c3_p4_conv1_act_post_act_fake_quantizer = None
add_8_post_act_fake_quantizer = self.add_8_post_act_fake_quantizer(add_8); add_8 = None
cat_7 = torch.cat((add_8_post_act_fake_quantizer, neck_c3_p4_conv2_act_post_act_fake_quantizer), dim = 1); add_8_post_act_fake_quantizer = neck_c3_p4_conv2_act_post_act_fake_quantizer = None
cat_7_post_act_fake_quantizer = self.cat_7_post_act_fake_quantizer(cat_7); cat_7 = None
neck_c3_p4_conv3_conv = self.neck.C3_p4.conv3.conv(cat_7_post_act_fake_quantizer); cat_7_post_act_fake_quantizer = None
neck_c3_p4_conv3_conv_post_act_fake_quantizer = self.neck_c3_p4_conv3_conv_post_act_fake_quantizer(neck_c3_p4_conv3_conv); neck_c3_p4_conv3_conv = None
neck_c3_p4_conv3_act = self.neck.C3_p4.conv3.act(neck_c3_p4_conv3_conv_post_act_fake_quantizer); neck_c3_p4_conv3_conv_post_act_fake_quantizer = None
neck_c3_p4_conv3_act_post_act_fake_quantizer = self.neck_c3_p4_conv3_act_post_act_fake_quantizer(neck_c3_p4_conv3_act); neck_c3_p4_conv3_act = None
neck_reduce_conv1_conv = self.neck.reduce_conv1.conv(neck_c3_p4_conv3_act_post_act_fake_quantizer); neck_c3_p4_conv3_act_post_act_fake_quantizer = None
neck_reduce_conv1_conv_post_act_fake_quantizer = self.neck_reduce_conv1_conv_post_act_fake_quantizer(neck_reduce_conv1_conv); neck_reduce_conv1_conv = None
neck_reduce_conv1_act = self.neck.reduce_conv1.act(neck_reduce_conv1_conv_post_act_fake_quantizer); neck_reduce_conv1_conv_post_act_fake_quantizer = None
neck_reduce_conv1_act_post_act_fake_quantizer = self.neck_reduce_conv1_act_post_act_fake_quantizer(neck_reduce_conv1_act); neck_reduce_conv1_act = None
getattr_2 = getitem_2.shape
getitem_6 = getattr_2[slice(-2, None, None)]; getattr_2 = None
interpolate_2 = torch.nn.functional.interpolate(neck_reduce_conv1_act_post_act_fake_quantizer, size = getitem_6, scale_factor = None, mode = 'nearest', align_corners = None, recompute_scale_factor = None); getitem_6 = None
interpolate_2_post_act_fake_quantizer = self.interpolate_2_post_act_fake_quantizer(interpolate_2); interpolate_2 = None
cat_8 = torch.cat([interpolate_2_post_act_fake_quantizer, getitem_2], 1); interpolate_2_post_act_fake_quantizer = getitem_2 = None
cat_8_post_act_fake_quantizer = self.cat_8_post_act_fake_quantizer(cat_8); cat_8 = None
neck_c3_p3_conv1_conv = self.neck.C3_p3.conv1.conv(cat_8_post_act_fake_quantizer)
neck_c3_p3_conv1_conv_post_act_fake_quantizer = self.neck_c3_p3_conv1_conv_post_act_fake_quantizer(neck_c3_p3_conv1_conv); neck_c3_p3_conv1_conv = None
neck_c3_p3_conv1_act = self.neck.C3_p3.conv1.act(neck_c3_p3_conv1_conv_post_act_fake_quantizer); neck_c3_p3_conv1_conv_post_act_fake_quantizer = None
neck_c3_p3_conv1_act_post_act_fake_quantizer = self.neck_c3_p3_conv1_act_post_act_fake_quantizer(neck_c3_p3_conv1_act); neck_c3_p3_conv1_act = None
neck_c3_p3_conv2_conv = self.neck.C3_p3.conv2.conv(cat_8_post_act_fake_quantizer); cat_8_post_act_fake_quantizer = None
neck_c3_p3_conv2_conv_post_act_fake_quantizer = self.neck_c3_p3_conv2_conv_post_act_fake_quantizer(neck_c3_p3_conv2_conv); neck_c3_p3_conv2_conv = None
neck_c3_p3_conv2_act = self.neck.C3_p3.conv2.act(neck_c3_p3_conv2_conv_post_act_fake_quantizer); neck_c3_p3_conv2_conv_post_act_fake_quantizer = None
neck_c3_p3_conv2_act_post_act_fake_quantizer = self.neck_c3_p3_conv2_act_post_act_fake_quantizer(neck_c3_p3_conv2_act); neck_c3_p3_conv2_act = None
neck_c3_p3_m_0_conv1_conv = getattr(self.neck.C3_p3.m, "0").conv1.conv(neck_c3_p3_conv1_act_post_act_fake_quantizer)
neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer = self.neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer(neck_c3_p3_m_0_conv1_conv); neck_c3_p3_m_0_conv1_conv = None
neck_c3_p3_m_0_conv1_act = getattr(self.neck.C3_p3.m, "0").conv1.act(neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer); neck_c3_p3_m_0_conv1_conv_post_act_fake_quantizer = None
neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer = self.neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer(neck_c3_p3_m_0_conv1_act); neck_c3_p3_m_0_conv1_act = None
neck_c3_p3_m_0_conv2_conv = getattr(self.neck.C3_p3.m, "0").conv2.conv(neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer); neck_c3_p3_m_0_conv1_act_post_act_fake_quantizer = None
neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer = self.neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer(neck_c3_p3_m_0_conv2_conv); neck_c3_p3_m_0_conv2_conv = None
neck_c3_p3_m_0_conv2_act = getattr(self.neck.C3_p3.m, "0").conv2.act(neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer); neck_c3_p3_m_0_conv2_conv_post_act_fake_quantizer = None
neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer = self.neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer(neck_c3_p3_m_0_conv2_act); neck_c3_p3_m_0_conv2_act = None
add_9 = neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer + neck_c3_p3_conv1_act_post_act_fake_quantizer; neck_c3_p3_m_0_conv2_act_post_act_fake_quantizer = neck_c3_p3_conv1_act_post_act_fake_quantizer = None
add_9_post_act_fake_quantizer = self.add_9_post_act_fake_quantizer(add_9); add_9 = None
cat_9 = torch.cat((add_9_post_act_fake_quantizer, neck_c3_p3_conv2_act_post_act_fake_quantizer), dim = 1); add_9_post_act_fake_quantizer = neck_c3_p3_conv2_act_post_act_fake_quantizer = None
cat_9_post_act_fake_quantizer = self.cat_9_post_act_fake_quantizer(cat_9); cat_9 = None
neck_c3_p3_conv3_conv = self.neck.C3_p3.conv3.conv(cat_9_post_act_fake_quantizer); cat_9_post_act_fake_quantizer = None
neck_c3_p3_conv3_conv_post_act_fake_quantizer = self.neck_c3_p3_conv3_conv_post_act_fake_quantizer(neck_c3_p3_conv3_conv); neck_c3_p3_conv3_conv = None
neck_c3_p3_conv3_act = self.neck.C3_p3.conv3.act(neck_c3_p3_conv3_conv_post_act_fake_quantizer); neck_c3_p3_conv3_conv_post_act_fake_quantizer = None
neck_c3_p3_conv3_act_post_act_fake_quantizer = self.neck_c3_p3_conv3_act_post_act_fake_quantizer(neck_c3_p3_conv3_act); neck_c3_p3_conv3_act = None
neck_bu_conv2_conv = self.neck.bu_conv2.conv(neck_c3_p3_conv3_act_post_act_fake_quantizer)
neck_bu_conv2_conv_post_act_fake_quantizer = self.neck_bu_conv2_conv_post_act_fake_quantizer(neck_bu_conv2_conv); neck_bu_conv2_conv = None
neck_bu_conv2_act = self.neck.bu_conv2.act(neck_bu_conv2_conv_post_act_fake_quantizer); neck_bu_conv2_conv_post_act_fake_quantizer = None
cat_10 = torch.cat([neck_bu_conv2_act, neck_reduce_conv1_act_post_act_fake_quantizer], 1); neck_bu_conv2_act = neck_reduce_conv1_act_post_act_fake_quantizer = None
cat_10_post_act_fake_quantizer = self.cat_10_post_act_fake_quantizer(cat_10); cat_10 = None
neck_c3_n3_conv1_conv = self.neck.C3_n3.conv1.conv(cat_10_post_act_fake_quantizer)
neck_c3_n3_conv1_conv_post_act_fake_quantizer = self.neck_c3_n3_conv1_conv_post_act_fake_quantizer(neck_c3_n3_conv1_conv); neck_c3_n3_conv1_conv = None
neck_c3_n3_conv1_act = self.neck.C3_n3.conv1.act(neck_c3_n3_conv1_conv_post_act_fake_quantizer); neck_c3_n3_conv1_conv_post_act_fake_quantizer = None
neck_c3_n3_conv1_act_post_act_fake_quantizer = self.neck_c3_n3_conv1_act_post_act_fake_quantizer(neck_c3_n3_conv1_act); neck_c3_n3_conv1_act = None
neck_c3_n3_conv2_conv = self.neck.C3_n3.conv2.conv(cat_10_post_act_fake_quantizer); cat_10_post_act_fake_quantizer = None
neck_c3_n3_conv2_conv_post_act_fake_quantizer = self.neck_c3_n3_conv2_conv_post_act_fake_quantizer(neck_c3_n3_conv2_conv); neck_c3_n3_conv2_conv = None
neck_c3_n3_conv2_act = self.neck.C3_n3.conv2.act(neck_c3_n3_conv2_conv_post_act_fake_quantizer); neck_c3_n3_conv2_conv_post_act_fake_quantizer = None
neck_c3_n3_conv2_act_post_act_fake_quantizer = self.neck_c3_n3_conv2_act_post_act_fake_quantizer(neck_c3_n3_conv2_act); neck_c3_n3_conv2_act = None
neck_c3_n3_m_0_conv1_conv = getattr(self.neck.C3_n3.m, "0").conv1.conv(neck_c3_n3_conv1_act_post_act_fake_quantizer)
neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer = self.neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer(neck_c3_n3_m_0_conv1_conv); neck_c3_n3_m_0_conv1_conv = None
neck_c3_n3_m_0_conv1_act = getattr(self.neck.C3_n3.m, "0").conv1.act(neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer); neck_c3_n3_m_0_conv1_conv_post_act_fake_quantizer = None
neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer = self.neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer(neck_c3_n3_m_0_conv1_act); neck_c3_n3_m_0_conv1_act = None
neck_c3_n3_m_0_conv2_conv = getattr(self.neck.C3_n3.m, "0").conv2.conv(neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer); neck_c3_n3_m_0_conv1_act_post_act_fake_quantizer = None
neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer = self.neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer(neck_c3_n3_m_0_conv2_conv); neck_c3_n3_m_0_conv2_conv = None
neck_c3_n3_m_0_conv2_act = getattr(self.neck.C3_n3.m, "0").conv2.act(neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer); neck_c3_n3_m_0_conv2_conv_post_act_fake_quantizer = None
neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer = self.neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer(neck_c3_n3_m_0_conv2_act); neck_c3_n3_m_0_conv2_act = None
add_10 = neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer + neck_c3_n3_conv1_act_post_act_fake_quantizer; neck_c3_n3_m_0_conv2_act_post_act_fake_quantizer = neck_c3_n3_conv1_act_post_act_fake_quantizer = None
add_10_post_act_fake_quantizer = self.add_10_post_act_fake_quantizer(add_10); add_10 = None
cat_11 = torch.cat((add_10_post_act_fake_quantizer, neck_c3_n3_conv2_act_post_act_fake_quantizer), dim = 1); add_10_post_act_fake_quantizer = neck_c3_n3_conv2_act_post_act_fake_quantizer = None
cat_11_post_act_fake_quantizer = self.cat_11_post_act_fake_quantizer(cat_11); cat_11 = None
neck_c3_n3_conv3_conv = self.neck.C3_n3.conv3.conv(cat_11_post_act_fake_quantizer); cat_11_post_act_fake_quantizer = None
neck_c3_n3_conv3_conv_post_act_fake_quantizer = self.neck_c3_n3_conv3_conv_post_act_fake_quantizer(neck_c3_n3_conv3_conv); neck_c3_n3_conv3_conv = None
neck_c3_n3_conv3_act = self.neck.C3_n3.conv3.act(neck_c3_n3_conv3_conv_post_act_fake_quantizer); neck_c3_n3_conv3_conv_post_act_fake_quantizer = None
neck_c3_n3_conv3_act_post_act_fake_quantizer = self.neck_c3_n3_conv3_act_post_act_fake_quantizer(neck_c3_n3_conv3_act); neck_c3_n3_conv3_act = None
neck_bu_conv1_conv = self.neck.bu_conv1.conv(neck_c3_n3_conv3_act_post_act_fake_quantizer)
neck_bu_conv1_conv_post_act_fake_quantizer = self.neck_bu_conv1_conv_post_act_fake_quantizer(neck_bu_conv1_conv); neck_bu_conv1_conv = None
neck_bu_conv1_act = self.neck.bu_conv1.act(neck_bu_conv1_conv_post_act_fake_quantizer); neck_bu_conv1_conv_post_act_fake_quantizer = None
cat_12 = torch.cat([neck_bu_conv1_act, neck_lateral_conv0_act_post_act_fake_quantizer], 1); neck_bu_conv1_act = neck_lateral_conv0_act_post_act_fake_quantizer = None
cat_12_post_act_fake_quantizer = self.cat_12_post_act_fake_quantizer(cat_12); cat_12 = None
neck_c3_n4_conv1_conv = self.neck.C3_n4.conv1.conv(cat_12_post_act_fake_quantizer)
neck_c3_n4_conv1_conv_post_act_fake_quantizer = self.neck_c3_n4_conv1_conv_post_act_fake_quantizer(neck_c3_n4_conv1_conv); neck_c3_n4_conv1_conv = None
neck_c3_n4_conv1_act = self.neck.C3_n4.conv1.act(neck_c3_n4_conv1_conv_post_act_fake_quantizer); neck_c3_n4_conv1_conv_post_act_fake_quantizer = None
neck_c3_n4_conv1_act_post_act_fake_quantizer = self.neck_c3_n4_conv1_act_post_act_fake_quantizer(neck_c3_n4_conv1_act); neck_c3_n4_conv1_act = None
neck_c3_n4_conv2_conv = self.neck.C3_n4.conv2.conv(cat_12_post_act_fake_quantizer); cat_12_post_act_fake_quantizer = None
neck_c3_n4_conv2_conv_post_act_fake_quantizer = self.neck_c3_n4_conv2_conv_post_act_fake_quantizer(neck_c3_n4_conv2_conv); neck_c3_n4_conv2_conv = None
neck_c3_n4_conv2_act = self.neck.C3_n4.conv2.act(neck_c3_n4_conv2_conv_post_act_fake_quantizer); neck_c3_n4_conv2_conv_post_act_fake_quantizer = None
neck_c3_n4_conv2_act_post_act_fake_quantizer = self.neck_c3_n4_conv2_act_post_act_fake_quantizer(neck_c3_n4_conv2_act); neck_c3_n4_conv2_act = None
neck_c3_n4_m_0_conv1_conv = getattr(self.neck.C3_n4.m, "0").conv1.conv(neck_c3_n4_conv1_act_post_act_fake_quantizer)
neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer = self.neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer(neck_c3_n4_m_0_conv1_conv); neck_c3_n4_m_0_conv1_conv = None
neck_c3_n4_m_0_conv1_act = getattr(self.neck.C3_n4.m, "0").conv1.act(neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer); neck_c3_n4_m_0_conv1_conv_post_act_fake_quantizer = None
neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer = self.neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer(neck_c3_n4_m_0_conv1_act); neck_c3_n4_m_0_conv1_act = None
neck_c3_n4_m_0_conv2_conv = getattr(self.neck.C3_n4.m, "0").conv2.conv(neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer); neck_c3_n4_m_0_conv1_act_post_act_fake_quantizer = None
neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer = self.neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer(neck_c3_n4_m_0_conv2_conv); neck_c3_n4_m_0_conv2_conv = None
neck_c3_n4_m_0_conv2_act = getattr(self.neck.C3_n4.m, "0").conv2.act(neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer); neck_c3_n4_m_0_conv2_conv_post_act_fake_quantizer = None
neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer = self.neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer(neck_c3_n4_m_0_conv2_act); neck_c3_n4_m_0_conv2_act = None
add_11 = neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer + neck_c3_n4_conv1_act_post_act_fake_quantizer; neck_c3_n4_m_0_conv2_act_post_act_fake_quantizer = neck_c3_n4_conv1_act_post_act_fake_quantizer = None
add_11_post_act_fake_quantizer = self.add_11_post_act_fake_quantizer(add_11); add_11 = None
cat_13 = torch.cat((add_11_post_act_fake_quantizer, neck_c3_n4_conv2_act_post_act_fake_quantizer), dim = 1); add_11_post_act_fake_quantizer = neck_c3_n4_conv2_act_post_act_fake_quantizer = None
cat_13_post_act_fake_quantizer = self.cat_13_post_act_fake_quantizer(cat_13); cat_13 = None
neck_c3_n4_conv3_conv = self.neck.C3_n4.conv3.conv(cat_13_post_act_fake_quantizer); cat_13_post_act_fake_quantizer = None
neck_c3_n4_conv3_conv_post_act_fake_quantizer = self.neck_c3_n4_conv3_conv_post_act_fake_quantizer(neck_c3_n4_conv3_conv); neck_c3_n4_conv3_conv = None
neck_c3_n4_conv3_act = self.neck.C3_n4.conv3.act(neck_c3_n4_conv3_conv_post_act_fake_quantizer); neck_c3_n4_conv3_conv_post_act_fake_quantizer = None
_tensor_constant1 = self._tensor_constant1
update_1 = input_1_post_act_fake_quantizer.update({'features': (neck_c3_p3_conv3_act_post_act_fake_quantizer, neck_c3_n3_conv3_act_post_act_fake_quantizer, neck_c3_n4_conv3_act), 'strides': _tensor_constant1}); neck_c3_p3_conv3_act_post_act_fake_quantizer = neck_c3_n3_conv3_act_post_act_fake_quantizer = neck_c3_n4_conv3_act = _tensor_constant1 = None
getitem_7 = input_1_post_act_fake_quantizer['features']
getitem_8 = getitem_7[0]
getitem_8_post_act_fake_quantizer = self.getitem_8_post_act_fake_quantizer(getitem_8); getitem_8 = None
roi_head_stems_0_conv = getattr(self.roi_head.stems, "0").conv(getitem_8_post_act_fake_quantizer); getitem_8_post_act_fake_quantizer = None
roi_head_stems_0_conv_post_act_fake_quantizer = self.roi_head_stems_0_conv_post_act_fake_quantizer(roi_head_stems_0_conv); roi_head_stems_0_conv = None
roi_head_stems_0_act = getattr(self.roi_head.stems, "0").act(roi_head_stems_0_conv_post_act_fake_quantizer); roi_head_stems_0_conv_post_act_fake_quantizer = None
roi_head_stems_0_act_post_act_fake_quantizer = self.roi_head_stems_0_act_post_act_fake_quantizer(roi_head_stems_0_act); roi_head_stems_0_act = None
roi_head_cls_convs_0_0_conv = getattr(getattr(self.roi_head.cls_convs, "0"), "0").conv(roi_head_stems_0_act_post_act_fake_quantizer)
roi_head_cls_convs_0_0_conv_post_act_fake_quantizer = self.roi_head_cls_convs_0_0_conv_post_act_fake_quantizer(roi_head_cls_convs_0_0_conv); roi_head_cls_convs_0_0_conv = None
roi_head_cls_convs_0_0_act = getattr(getattr(self.roi_head.cls_convs, "0"), "0").act(roi_head_cls_convs_0_0_conv_post_act_fake_quantizer); roi_head_cls_convs_0_0_conv_post_act_fake_quantizer = None
roi_head_cls_convs_0_0_act_post_act_fake_quantizer = self.roi_head_cls_convs_0_0_act_post_act_fake_quantizer(roi_head_cls_convs_0_0_act); roi_head_cls_convs_0_0_act = None
roi_head_cls_convs_0_1_conv = getattr(getattr(self.roi_head.cls_convs, "0"), "1").conv(roi_head_cls_convs_0_0_act_post_act_fake_quantizer); roi_head_cls_convs_0_0_act_post_act_fake_quantizer = None
roi_head_cls_convs_0_1_conv_post_act_fake_quantizer = self.roi_head_cls_convs_0_1_conv_post_act_fake_quantizer(roi_head_cls_convs_0_1_conv); roi_head_cls_convs_0_1_conv = None
roi_head_cls_convs_0_1_act = getattr(getattr(self.roi_head.cls_convs, "0"), "1").act(roi_head_cls_convs_0_1_conv_post_act_fake_quantizer); roi_head_cls_convs_0_1_conv_post_act_fake_quantizer = None
roi_head_cls_convs_0_1_act_post_act_fake_quantizer = self.roi_head_cls_convs_0_1_act_post_act_fake_quantizer(roi_head_cls_convs_0_1_act); roi_head_cls_convs_0_1_act = None
roi_head_reg_convs_0_0_conv = getattr(getattr(self.roi_head.reg_convs, "0"), "0").conv(roi_head_stems_0_act_post_act_fake_quantizer); roi_head_stems_0_act_post_act_fake_quantizer = None
roi_head_reg_convs_0_0_conv_post_act_fake_quantizer = self.roi_head_reg_convs_0_0_conv_post_act_fake_quantizer(roi_head_reg_convs_0_0_conv); roi_head_reg_convs_0_0_conv = None
roi_head_reg_convs_0_0_act = getattr(getattr(self.roi_head.reg_convs, "0"), "0").act(roi_head_reg_convs_0_0_conv_post_act_fake_quantizer); roi_head_reg_convs_0_0_conv_post_act_fake_quantizer = None
roi_head_reg_convs_0_0_act_post_act_fake_quantizer = self.roi_head_reg_convs_0_0_act_post_act_fake_quantizer(roi_head_reg_convs_0_0_act); roi_head_reg_convs_0_0_act = None
roi_head_reg_convs_0_1_conv = getattr(getattr(self.roi_head.reg_convs, "0"), "1").conv(roi_head_reg_convs_0_0_act_post_act_fake_quantizer); roi_head_reg_convs_0_0_act_post_act_fake_quantizer = None
roi_head_reg_convs_0_1_conv_post_act_fake_quantizer = self.roi_head_reg_convs_0_1_conv_post_act_fake_quantizer(roi_head_reg_convs_0_1_conv); roi_head_reg_convs_0_1_conv = None
roi_head_reg_convs_0_1_act = getattr(getattr(self.roi_head.reg_convs, "0"), "1").act(roi_head_reg_convs_0_1_conv_post_act_fake_quantizer); roi_head_reg_convs_0_1_conv_post_act_fake_quantizer = None
roi_head_reg_convs_0_1_act_post_act_fake_quantizer = self.roi_head_reg_convs_0_1_act_post_act_fake_quantizer(roi_head_reg_convs_0_1_act); roi_head_reg_convs_0_1_act = None
roi_head_cls_preds_0 = getattr(self.roi_head.cls_preds, "0")(roi_head_cls_convs_0_1_act_post_act_fake_quantizer); roi_head_cls_convs_0_1_act_post_act_fake_quantizer = None
roi_head_cls_preds_0_post_act_fake_quantizer = self.roi_head_cls_preds_0_post_act_fake_quantizer(roi_head_cls_preds_0); roi_head_cls_preds_0 = None
roi_head_reg_preds_0 = getattr(self.roi_head.reg_preds, "0")(roi_head_reg_convs_0_1_act_post_act_fake_quantizer)
roi_head_reg_preds_0_post_act_fake_quantizer = self.roi_head_reg_preds_0_post_act_fake_quantizer(roi_head_reg_preds_0); roi_head_reg_preds_0 = None
roi_head_obj_preds_0 = getattr(self.roi_head.obj_preds, "0")(roi_head_reg_convs_0_1_act_post_act_fake_quantizer); roi_head_reg_convs_0_1_act_post_act_fake_quantizer = None
roi_head_obj_preds_0_post_act_fake_quantizer = self.roi_head_obj_preds_0_post_act_fake_quantizer(roi_head_obj_preds_0); roi_head_obj_preds_0 = None
getitem_9 = getitem_7[1]
getitem_9_post_act_fake_quantizer = self.getitem_9_post_act_fake_quantizer(getitem_9); getitem_9 = None
roi_head_stems_1_conv = getattr(self.roi_head.stems, "1").conv(getitem_9_post_act_fake_quantizer); getitem_9_post_act_fake_quantizer = None
roi_head_stems_1_conv_post_act_fake_quantizer = self.roi_head_stems_1_conv_post_act_fake_quantizer(roi_head_stems_1_conv); roi_head_stems_1_conv = None
roi_head_stems_1_act = getattr(self.roi_head.stems, "1").act(roi_head_stems_1_conv_post_act_fake_quantizer); roi_head_stems_1_conv_post_act_fake_quantizer = None
roi_head_stems_1_act_post_act_fake_quantizer = self.roi_head_stems_1_act_post_act_fake_quantizer(roi_head_stems_1_act); roi_head_stems_1_act = None
roi_head_cls_convs_1_0_conv = getattr(getattr(self.roi_head.cls_convs, "1"), "0").conv(roi_head_stems_1_act_post_act_fake_quantizer)
roi_head_cls_convs_1_0_conv_post_act_fake_quantizer = self.roi_head_cls_convs_1_0_conv_post_act_fake_quantizer(roi_head_cls_convs_1_0_conv); roi_head_cls_convs_1_0_conv = None
roi_head_cls_convs_1_0_act = getattr(getattr(self.roi_head.cls_convs, "1"), "0").act(roi_head_cls_convs_1_0_conv_post_act_fake_quantizer); roi_head_cls_convs_1_0_conv_post_act_fake_quantizer = None
roi_head_cls_convs_1_0_act_post_act_fake_quantizer = self.roi_head_cls_convs_1_0_act_post_act_fake_quantizer(roi_head_cls_convs_1_0_act); roi_head_cls_convs_1_0_act = None
roi_head_cls_convs_1_1_conv = getattr(getattr(self.roi_head.cls_convs, "1"), "1").conv(roi_head_cls_convs_1_0_act_post_act_fake_quantizer); roi_head_cls_convs_1_0_act_post_act_fake_quantizer = None
roi_head_cls_convs_1_1_conv_post_act_fake_quantizer = self.roi_head_cls_convs_1_1_conv_post_act_fake_quantizer(roi_head_cls_convs_1_1_conv); roi_head_cls_convs_1_1_conv = None
roi_head_cls_convs_1_1_act = getattr(getattr(self.roi_head.cls_convs, "1"), "1").act(roi_head_cls_convs_1_1_conv_post_act_fake_quantizer); roi_head_cls_convs_1_1_conv_post_act_fake_quantizer = None
roi_head_cls_convs_1_1_act_post_act_fake_quantizer = self.roi_head_cls_convs_1_1_act_post_act_fake_quantizer(roi_head_cls_convs_1_1_act); roi_head_cls_convs_1_1_act = None
roi_head_reg_convs_1_0_conv = getattr(getattr(self.roi_head.reg_convs, "1"), "0").conv(roi_head_stems_1_act_post_act_fake_quantizer); roi_head_stems_1_act_post_act_fake_quantizer = None
roi_head_reg_convs_1_0_conv_post_act_fake_quantizer = self.roi_head_reg_convs_1_0_conv_post_act_fake_quantizer(roi_head_reg_convs_1_0_conv); roi_head_reg_convs_1_0_conv = None
roi_head_reg_convs_1_0_act = getattr(getattr(self.roi_head.reg_convs, "1"), "0").act(roi_head_reg_convs_1_0_conv_post_act_fake_quantizer); roi_head_reg_convs_1_0_conv_post_act_fake_quantizer = None
roi_head_reg_convs_1_0_act_post_act_fake_quantizer = self.roi_head_reg_convs_1_0_act_post_act_fake_quantizer(roi_head_reg_convs_1_0_act); roi_head_reg_convs_1_0_act = None
roi_head_reg_convs_1_1_conv = getattr(getattr(self.roi_head.reg_convs, "1"), "1").conv(roi_head_reg_convs_1_0_act_post_act_fake_quantizer); roi_head_reg_convs_1_0_act_post_act_fake_quantizer = None
roi_head_reg_convs_1_1_conv_post_act_fake_quantizer = self.roi_head_reg_convs_1_1_conv_post_act_fake_quantizer(roi_head_reg_convs_1_1_conv); roi_head_reg_convs_1_1_conv = None
roi_head_reg_convs_1_1_act = getattr(getattr(self.roi_head.reg_convs, "1"), "1").act(roi_head_reg_convs_1_1_conv_post_act_fake_quantizer); roi_head_reg_convs_1_1_conv_post_act_fake_quantizer = None
roi_head_reg_convs_1_1_act_post_act_fake_quantizer = self.roi_head_reg_convs_1_1_act_post_act_fake_quantizer(roi_head_reg_convs_1_1_act); roi_head_reg_convs_1_1_act = None
roi_head_cls_preds_1 = getattr(self.roi_head.cls_preds, "1")(roi_head_cls_convs_1_1_act_post_act_fake_quantizer); roi_head_cls_convs_1_1_act_post_act_fake_quantizer = None
roi_head_cls_preds_1_post_act_fake_quantizer = self.roi_head_cls_preds_1_post_act_fake_quantizer(roi_head_cls_preds_1); roi_head_cls_preds_1 = None
roi_head_reg_preds_1 = getattr(self.roi_head.reg_preds, "1")(roi_head_reg_convs_1_1_act_post_act_fake_quantizer)
roi_head_reg_preds_1_post_act_fake_quantizer = self.roi_head_reg_preds_1_post_act_fake_quantizer(roi_head_reg_preds_1); roi_head_reg_preds_1 = None
roi_head_obj_preds_1 = getattr(self.roi_head.obj_preds, "1")(roi_head_reg_convs_1_1_act_post_act_fake_quantizer); roi_head_reg_convs_1_1_act_post_act_fake_quantizer = None
roi_head_obj_preds_1_post_act_fake_quantizer = self.roi_head_obj_preds_1_post_act_fake_quantizer(roi_head_obj_preds_1); roi_head_obj_preds_1 = None
getitem_10 = getitem_7[2]; getitem_7 = None
getitem_10_post_act_fake_quantizer = self.getitem_10_post_act_fake_quantizer(getitem_10); getitem_10 = None
roi_head_stems_2_conv = getattr(self.roi_head.stems, "2").conv(getitem_10_post_act_fake_quantizer); getitem_10_post_act_fake_quantizer = None
roi_head_stems_2_conv_post_act_fake_quantizer = self.roi_head_stems_2_conv_post_act_fake_quantizer(roi_head_stems_2_conv); roi_head_stems_2_conv = None
roi_head_stems_2_act = getattr(self.roi_head.stems, "2").act(roi_head_stems_2_conv_post_act_fake_quantizer); roi_head_stems_2_conv_post_act_fake_quantizer = None
roi_head_stems_2_act_post_act_fake_quantizer = self.roi_head_stems_2_act_post_act_fake_quantizer(roi_head_stems_2_act); roi_head_stems_2_act = None
roi_head_cls_convs_2_0_conv = getattr(getattr(self.roi_head.cls_convs, "2"), "0").conv(roi_head_stems_2_act_post_act_fake_quantizer)
roi_head_cls_convs_2_0_conv_post_act_fake_quantizer = self.roi_head_cls_convs_2_0_conv_post_act_fake_quantizer(roi_head_cls_convs_2_0_conv); roi_head_cls_convs_2_0_conv = None
roi_head_cls_convs_2_0_act = getattr(getattr(self.roi_head.cls_convs, "2"), "0").act(roi_head_cls_convs_2_0_conv_post_act_fake_quantizer); roi_head_cls_convs_2_0_conv_post_act_fake_quantizer = None
roi_head_cls_convs_2_0_act_post_act_fake_quantizer = self.roi_head_cls_convs_2_0_act_post_act_fake_quantizer(roi_head_cls_convs_2_0_act); roi_head_cls_convs_2_0_act = None
roi_head_cls_convs_2_1_conv = getattr(getattr(self.roi_head.cls_convs, "2"), "1").conv(roi_head_cls_convs_2_0_act_post_act_fake_quantizer); roi_head_cls_convs_2_0_act_post_act_fake_quantizer = None
roi_head_cls_convs_2_1_conv_post_act_fake_quantizer = self.roi_head_cls_convs_2_1_conv_post_act_fake_quantizer(roi_head_cls_convs_2_1_conv); roi_head_cls_convs_2_1_conv = None
roi_head_cls_convs_2_1_act = getattr(getattr(self.roi_head.cls_convs, "2"), "1").act(roi_head_cls_convs_2_1_conv_post_act_fake_quantizer); roi_head_cls_convs_2_1_conv_post_act_fake_quantizer = None
roi_head_cls_convs_2_1_act_post_act_fake_quantizer = self.roi_head_cls_convs_2_1_act_post_act_fake_quantizer(roi_head_cls_convs_2_1_act); roi_head_cls_convs_2_1_act = None
roi_head_reg_convs_2_0_conv = getattr(getattr(self.roi_head.reg_convs, "2"), "0").conv(roi_head_stems_2_act_post_act_fake_quantizer); roi_head_stems_2_act_post_act_fake_quantizer = None
roi_head_reg_convs_2_0_conv_post_act_fake_quantizer = self.roi_head_reg_convs_2_0_conv_post_act_fake_quantizer(roi_head_reg_convs_2_0_conv); roi_head_reg_convs_2_0_conv = None
roi_head_reg_convs_2_0_act = getattr(getattr(self.roi_head.reg_convs, "2"), "0").act(roi_head_reg_convs_2_0_conv_post_act_fake_quantizer); roi_head_reg_convs_2_0_conv_post_act_fake_quantizer = None
roi_head_reg_convs_2_0_act_post_act_fake_quantizer = self.roi_head_reg_convs_2_0_act_post_act_fake_quantizer(roi_head_reg_convs_2_0_act); roi_head_reg_convs_2_0_act = None
roi_head_reg_convs_2_1_conv = getattr(getattr(self.roi_head.reg_convs, "2"), "1").conv(roi_head_reg_convs_2_0_act_post_act_fake_quantizer); roi_head_reg_convs_2_0_act_post_act_fake_quantizer = None
roi_head_reg_convs_2_1_conv_post_act_fake_quantizer = self.roi_head_reg_convs_2_1_conv_post_act_fake_quantizer(roi_head_reg_convs_2_1_conv); roi_head_reg_convs_2_1_conv = None
roi_head_reg_convs_2_1_act = getattr(getattr(self.roi_head.reg_convs, "2"), "1").act(roi_head_reg_convs_2_1_conv_post_act_fake_quantizer); roi_head_reg_convs_2_1_conv_post_act_fake_quantizer = None
roi_head_reg_convs_2_1_act_post_act_fake_quantizer = self.roi_head_reg_convs_2_1_act_post_act_fake_quantizer(roi_head_reg_convs_2_1_act); roi_head_reg_convs_2_1_act = None
roi_head_cls_preds_2 = getattr(self.roi_head.cls_preds, "2")(roi_head_cls_convs_2_1_act_post_act_fake_quantizer); roi_head_cls_convs_2_1_act_post_act_fake_quantizer = None
roi_head_cls_preds_2_post_act_fake_quantizer = self.roi_head_cls_preds_2_post_act_fake_quantizer(roi_head_cls_preds_2); roi_head_cls_preds_2 = None
roi_head_reg_preds_2 = getattr(self.roi_head.reg_preds, "2")(roi_head_reg_convs_2_1_act_post_act_fake_quantizer)
roi_head_reg_preds_2_post_act_fake_quantizer = self.roi_head_reg_preds_2_post_act_fake_quantizer(roi_head_reg_preds_2); roi_head_reg_preds_2 = None
roi_head_obj_preds_2 = getattr(self.roi_head.obj_preds, "2")(roi_head_reg_convs_2_1_act_post_act_fake_quantizer); roi_head_reg_convs_2_1_act_post_act_fake_quantizer = None
roi_head_obj_preds_2_post_act_fake_quantizer = self.roi_head_obj_preds_2_post_act_fake_quantizer(roi_head_obj_preds_2); roi_head_obj_preds_2 = None
update_2 = input_1_post_act_fake_quantizer.update({'preds': ((roi_head_cls_preds_0_post_act_fake_quantizer, roi_head_reg_preds_0_post_act_fake_quantizer, roi_head_obj_preds_0_post_act_fake_quantizer), (roi_head_cls_preds_1_post_act_fake_quantizer, roi_head_reg_preds_1_post_act_fake_quantizer, roi_head_obj_preds_1_post_act_fake_quantizer), (roi_head_cls_preds_2_post_act_fake_quantizer, roi_head_reg_preds_2_post_act_fake_quantizer, roi_head_obj_preds_2_post_act_fake_quantizer))}); roi_head_cls_preds_0_post_act_fake_quantizer = roi_head_reg_preds_0_post_act_fake_quantizer = roi_head_obj_preds_0_post_act_fake_quantizer = roi_head_cls_preds_1_post_act_fake_quantizer = roi_head_reg_preds_1_post_act_fake_quantizer = roi_head_obj_preds_1_post_act_fake_quantizer = roi_head_cls_preds_2_post_act_fake_quantizer = roi_head_reg_preds_2_post_act_fake_quantizer = roi_head_obj_preds_2_post_act_fake_quantizer = None
return input_1_post_act_fake_quantizer
[MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
[MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
[MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/data/lsc/United-Perception/up/__main__.py", line 27, in <module>
main()
File "/data/lsc/United-Perception/up/__main__.py", line 21, in main
args.run(args)
File "/data/lsc/United-Perception/up/commands/train.py", line 144, in _main
launch(main, args.num_gpus_per_machine, args.num_machines, args=args, start_method=args.fork_method)
File "/data/lsc/United-Perception/up/utils/env/launch.py", line 52, in launch
mp.start_processes(
File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 188, in start_processes
while not context.join():
File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 150, in join
raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException:
-- Process 2 terminated with the following error:
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
fn(i, *args)
File "/data/lsc/United-Perception/up/utils/env/launch.py", line 117, in _distributed_worker
main_func(args)
File "/data/lsc/United-Perception/up/commands/train.py", line 134, in main
runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs'])
File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 17, in __init__
super(QuantRunner, self).__init__(config, work_dir, training)
File "/data/lsc/United-Perception/up/runner/base_runner.py", line 59, in __init__
self.build()
File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 34, in build
self.calibrate()
File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 182, in calibrate
self.model(batch)
File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/data/lsc/United-Perception/up/tasks/quant/models/model_helper.py", line 76, in forward
output = submodule(input)
File "/opt/conda/lib/python3.8/site-packages/torch/fx/graph_module.py", line 308, in wrapped_call
return cls_call(self, *args, **kwargs)
File "/opt/conda/lib/python3.8/site-packages/torch/fx/graph_module.py", line 308, in wrapped_call
return cls_call(self, *args, **kwargs)
File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "<eval_with_key_2>", line 4, in forward
input_1_post_act_fake_quantizer = self.input_1_post_act_fake_quantizer(input_1); input_1 = None
File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/data/lsc/United-Perception/MQBench/mqbench/fake_quantize/fixed.py", line 20, in forward
self.activation_post_process(X.detach())
AttributeError: 'dict' object has no attribute 'detach'
I've produce a minimal code snippets
import torch from torchvision.models import resnet18 from mqbench.prepare_by_platform import BackendType, prepare_by_platform class model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = torch.nn.Conv2d(3,3,3) self.conv2 = torch.nn.Conv2d(3,3,3) self.conv3 = torch.nn.Conv2d(3,3,3) def forward(self, x): data = x['img'] x.update({'conv1': self.conv1(data)}) x.update({'conv2': self.conv2(data)}) x.update({'conv3': self.conv3(data)}) return x test_model = model() test_model = prepare_by_platform(test_model, BackendType.Tengine_u8) print(test_model) test_model({'img': torch.rand(1,3,224,224)})
And I fixed it by https://github.com/PannenetsF/MQBench/tree/tu8
我使用了最小代码块进行运行,但是提示我找不到tengine_u8的key
[MQBENCH] INFO: Quantize model Scheme: BackendType.Tengine_u8 Mode: Training
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: LearnableFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: LearnableFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: False / Bitwidth: 8 / Per channel: False / Pot scale: False / Extra kwargs: {}
odict_keys([<BackendType.NNIE: 'NNIE'>, <BackendType.Tensorrt: 'Tensorrt'>, <BackendType.Academic: 'Academic'>, <BackendType.OPENVINO: 'OPENVINO'>, <BackendType.Vitis: 'Vitis'>, <BackendType.PPLW8A16: 'PPLW8A16'>, <BackendType.SNPE: 'SNPE'>, <BackendType.PPLCUDA: 'PPLCUDA'>, <BackendType.Tensorrt_NLP: 'Tensorrt_NLP'>, <BackendType.Tengine_u8: 'Tengine_u8'>, <BackendType.ONNX_QNN: 'ONNX_QNN'>, <BackendType.Academic_NLP: 'Academic_NLP'>])
Traceback (most recent call last):
File "/data/lsc/United-Perception/tengine_u8/convert_tengine_u8.py", line 21, in <module>
test_model = prepare_by_platform(test_model, BackendType.Tengine_u8)
File "/data/lsc/United-Perception/MQBench/mqbench/prepare_by_platform.py", line 397, in prepare_by_platform
quantizer = DEFAULT_MODEL_QUANTIZER[deploy_backend](extra_quantizer_dict, extra_fuse_dict)
KeyError: <BackendType.Tengine_u8: 'Tengine_u8'>
检查下PYTHONPATH?
重新修改了路径 复现了标题中的问题
切换到 https://github.com/PannenetsF/MQBench/tree/tu8 了么,这个是可以解决的
切换过来了,指定了新路径,但是没有解决
切换到 https://github.com/PannenetsF/MQBench/tree/tu8 了么,这个是可以解决的
解决了问题,非常感谢
使用UP框架基于最新mqbench对yolox进行QAT训练,选择backbend=tengine_u8 时报错:AttributeError: 'dict' object has no attribute 'detach'
以下是使用的QAT配置文件:
以下是报错信息:
辛苦帮忙看下是什么问题?是mqbench还没有支持tengine么