Mrmoore98 / VectorMapNet_code

This is the official code base of VectorMapNet (ICML 2023)
https://tsinghua-mars-lab.github.io/vectormapnet/
GNU General Public License v3.0
409 stars 56 forks source link

Problem with Checkpoint #38

Open alfredgu001324 opened 1 year ago

alfredgu001324 commented 1 year ago

work_dir: ./work_dirs/vectormapnet collecting samples... collected 81 samples in 0.00s 2023-07-05 14:38:13,830 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe 2023-07-05 14:38:13,830 - mmcv - INFO - Use load_from_openmmlab loader 2023-07-05 14:38:13,878 - mmcv - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1.bias

missing keys in source state_dict: layer3.0.conv2.conv_offset.weight, layer3.0.conv2.conv_offset.bias, layer3.1.conv2.conv_offset.weight, layer3.1.conv2.conv_offset.bias, layer3.2.conv2.conv_offset.weight, layer3.2.conv2.conv_offset.bias, layer3.3.conv2.conv_offset.weight, layer3.3.conv2.conv_offset.bias, layer3.4.conv2.conv_offset.weight, layer3.4.conv2.conv_offset.bias, layer3.5.conv2.conv_offset.weight, layer3.5.conv2.conv_offset.bias, layer4.0.conv2.conv_offset.weight, layer4.0.conv2.conv_offset.bias, layer4.1.conv2.conv_offset.weight, layer4.1.conv2.conv_offset.bias, layer4.2.conv2.conv_offset.weight, layer4.2.conv2.conv_offset.bias

Use load_from_local loader The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1x1.weight

[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 7.6 task/s, elapsed: 11s, ETA: 0sstart evaluation! len of the results 81 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 11455.6 task/s, elapsed: 0s, ETA: 0s Done! ----------thershold:0.5---------- results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -0.5 update: True fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.658856s!! cls:ped_crossing done in 0.008414s!! cls:divider done in 0.015380s!! cls:contours done in 0.020888s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | ped_crossing | 76 | 656 | 0.605 | 0.435 | | divider | 460 | 1149 | 0.617 | 0.425 | | contours | 282 | 1030 | 0.245 | 0.093 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.318 | +--------------+-----+------+--------+-------+ ----------thershold:1---------- results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -1 update: False fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.180227s!! cls:ped_crossing done in 0.011127s!! cls:divider done in 0.016809s!! cls:contours done in 0.020043s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | ped_crossing | 76 | 656 | 0.934 | 0.887 | | divider | 460 | 1149 | 0.876 | 0.806 | | contours | 282 | 1030 | 0.628 | 0.459 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.717 | +--------------+-----+------+--------+-------+ ----------thershold:1.5---------- results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -1.5 update: False fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.196037s!! cls:ped_crossing done in 0.013920s!! cls:divider done in 0.015027s!! cls:contours done in 0.022493s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | ped_crossing | 76 | 656 | 0.974 | 0.956 | | divider | 460 | 1149 | 0.946 | 0.892 | | contours | 282 | 1030 | 0.794 | 0.669 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.839 | +--------------+-----+------+--------+-------+ ped_crossing: 0.7592802941799164 divider: 0.7075984378655752 contours: 0.40709205220143 map: 0.6246569280823072 VectormapNet Evaluation Results: {'mAP': 0.6246569280823072} {'mAP': 0.6246569280823072}

alfredgu001324 commented 1 year ago

As you can see, the result is quite poor with the uploaded checkpoint on the nuscenes mini. I am wondering why this is the case?

colahe commented 1 year ago

As you can see, the result is quite poor with the uploaded checkpoint on the nuscenes mini. I am wondering why this is the case?

work_dir: ./work_dirs/vectormapnet collecting samples... collected 81 samples in 0.00s 2023-07-05 14:38:13,830 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe 2023-07-05 14:38:13,830 - mmcv - INFO - Use load_from_openmmlab loader 2023-07-05 14:38:13,878 - mmcv - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1.bias

missing keys in source state_dict: layer3.0.conv2.conv_offset.weight, layer3.0.conv2.conv_offset.bias, layer3.1.conv2.conv_offset.weight, layer3.1.conv2.conv_offset.bias, layer3.2.conv2.conv_offset.weight, layer3.2.conv2.conv_offset.bias, layer3.3.conv2.conv_offset.weight, layer3.3.conv2.conv_offset.bias, layer3.4.conv2.conv_offset.weight, layer3.4.conv2.conv_offset.bias, layer3.5.conv2.conv_offset.weight, layer3.5.conv2.conv_offset.bias, layer4.0.conv2.conv_offset.weight, layer4.0.conv2.conv_offset.bias, layer4.1.conv2.conv_offset.weight, layer4.1.conv2.conv_offset.bias, layer4.2.conv2.conv_offset.weight, layer4.2.conv2.conv_offset.bias

Use load_from_local loader The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1x1.weight

[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 7.6 task/s, elapsed: 11s, ETA: 0sstart evaluation! len of the results 81 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 11455.6 task/s, elapsed: 0s, ETA: 0s Done! ---------_-thershold:0.5----------_ results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -0.5 update: True fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.658856s!! cls:ped_crossing done in 0.008414s!! cls:divider done in 0.015380s!! cls:contours done in 0.020888s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | pedcrossing | 76 | 656 | 0.605 | 0.435 | | divider | 460 | 1149 | 0.617 | 0.425 | | contours | 282 | 1030 | 0.245 | 0.093 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.318 | +--------------+-----+------+--------+-------+ ----------thershold:1----------_ results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -1 update: False fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.180227s!! cls:ped_crossing done in 0.011127s!! cls:divider done in 0.016809s!! cls:contours done in 0.020043s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | pedcrossing | 76 | 656 | 0.934 | 0.887 | | divider | 460 | 1149 | 0.876 | 0.806 | | contours | 282 | 1030 | 0.628 | 0.459 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.717 | +--------------+-----+------+--------+-------+ ----------thershold:1.5----------_ results path: ./work_dirs/vectormapnet/results_nuscence.pkl metric: chamfer threshold: -1.5 update: False fix_interval: False class_num: ['ped_crossing', 'divider', 'contours'] Formatting ... Data formatting done in 1.196037s!! cls:ped_crossing done in 0.013920s!! cls:divider done in 0.015027s!! cls:contours done in 0.022493s!!

+--------------+-----+------+--------+-------+ | class | gts | dets | recall | ap | +--------------+-----+------+--------+-------+ | ped_crossing | 76 | 656 | 0.974 | 0.956 | | divider | 460 | 1149 | 0.946 | 0.892 | | contours | 282 | 1030 | 0.794 | 0.669 | +--------------+-----+------+--------+-------+ | mAP | | | | 0.839 | +--------------+-----+------+--------+-------+ ped_crossing: 0.7592802941799164 divider: 0.7075984378655752 contours: 0.40709205220143 map: 0.6246569280823072 VectormapNet Evaluation Results: {'mAP': 0.6246569280823072} {'mAP': 0.6246569280823072}

Hi, may I ask where you did the test? colab?

alfredgu001324 commented 1 year ago

@colahe On my local machine

colahe commented 1 year ago

@colahe On my local machine Can you give me a peek at the instructions for the tests entered? I type: python tools/test.py configs/vectormapnet.py ./checkpoint/vectormapnet.pth --format-only but it always appears: CUDA out of memory. Tried to allocate 1.05 GiB (GPU 0; 5.80 GiB total capacity; 2.91 GiB already allocated; 686.94 MiB free; 3.72 GiB reserved in total by PyTorch), thanks a lot!

alfredgu001324 commented 1 year ago

@colahe Sorry for the late reply. It's been a while since I explored this repo. I don't quite remember the specific arguments but I think it is a similar command (maybe the same command that they posted)

colahe commented 1 year ago

@colahe Sorry for the late reply. It's been a while since I explored this repo. I don't quite remember the specific arguments but I think it is a similar command (maybe the same command that they posted)

Thanks for your reply, i have solved it!!!

XYyao16 commented 7 months ago

Hello, I also faced this situation of very poor evaluation performance. It was the same as yours. How did you solve it? Is there any problem that could not be done properly?

alfredgu001324 commented 7 months ago

I do not quite remember, did you try on the entire val set? You can try visualizing it to see whether it is really poor or not