Mukosame / Zooming-Slow-Mo-CVPR-2020

Fast and Accurate One-Stage Space-Time Video Super-Resolution (accepted in CVPR 2020)
GNU General Public License v3.0
917 stars 164 forks source link

Custom Dataset Format #68

Open nadimra opened 2 years ago

nadimra commented 2 years ago

Hi,

I'm planning on create a custom dataset for a specific domain which is to be trained on this network and I had a couple of questions of how I should go about this. The plan is to structure the dataset as follows:

customDataset
├── valid
│   ├── HR
│   │   ├── Vid1
│   │   │   ├── 0.png
│   │   │   ├── ...
│   │   │   └── ***.png
│   │   ├── Vid2
│   │   ├── Vid3
│   │   └── Vid4
│   └── LR
│       ├── Vid1
│       │   ├── 0.png
│       │   ├── ...
│       │   └── ***.png
│       ├── Vid2
│       ├── Vid3
│       └── Vid4
└── test
    ├── HR
    │   ├── Vid5
    │   │   ├── 0.png
    │   │   ├── ...
    │   │   └── ***.png
    │   ├── Vid6
    │   ├── Vid7
    │   └── Vid8
    └── LR
        ├── Vid5
        │   ├── 0.png
        │   ├── ...
        │   └── ***.png
        ├── Vid6
        ├── Vid7
        └── Vid8

So my plan is :

  1. Obtain the videos, extract the frames of these videos and place the frames in the HR folders.
  2. Use generate_mod_LR_bic.py to generate the corresponding LR frames.
  3. Use create_lmdb_mp.py but adjusted to my dataset to generate lmdb files.
  4. Edit train_zsm.yml for my dataset and run the train.py file.

Questions: