MzeroMiko / VMamba

VMamba: Visual State Space Models,code is based on mamba
MIT License
1.82k stars 98 forks source link

pretrained weights reload error. #241

Closed ttt0666 closed 3 days ago

ttt0666 commented 1 week ago

when I load pretraind weights of vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth in mmdetction, it shows:

Successfully load ckpt /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth
Failed loading checkpoint form /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth: 'layers.2.blocks.8.op.in_proj.weight'

when I check in file of 'vmamba.py':

        try:
            _ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
            print(f"Successfully load ckpt {ckpt}")
            incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
            print(incompatibleKeys)
        except Exception as e:
            print(f"Failed loading checkpoint form {ckpt}: {e}")

dose this mean that loading pretraind weights fails, that is to say, there is nothing to load to the backbone Backbone_VSSM?

因为打印出了Failed loading checkpoint form /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth: 'layers.2.blocks.8.op.in_proj.weight'这句话,也就意味着加载失败了,所以相当于作为backbone的时候,并没有加载任何的vssm1_tiny_0230s_ckpt_epoch_264.pth里面的预训练参数,对吗?这是不是哪里有问题?

MzeroMiko commented 1 week ago

what is the model you are using?

MzeroMiko commented 1 week ago

can you show me the full log?

ttt0666 commented 1 week ago

我是替换fasterrcnn的模型的backbone。我在try ... except 后面加了pdb.set_trace().打印出来的log如下:

model = dict(
    backbone=dict(
        depth=(
            2,
            2,
            8,
            2,
        ),
        dims=96,
        downsample_version='v3',
        drop_path_rate=0.2,
        forward_type='v05_noz',
        init_cfg=dict(
            checkpoint=
            '/checkpoints/swin/swin_tiny_patch4_window7_224.pth',
            type='Pretrained'),
        mlp_ratio=4.0,
        norm_layer='ln2d',
        out_indices=(2, ),
        patch_norm=True,
        patchembed_version='v2',
        pretrained=
        '/tianyanling/checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth',
        ssm_conv=3,
        ssm_conv_bias=False,
        ssm_d_state=1,
        ssm_dt_rank='auto',
        ssm_ratio=1.0,
        type='MM_VSSM'),
中间是模型配置,我就不贴出来了
work_dir = 'work_dirs/fasterrcnn'

Successfully load ckpt /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth
Failed loading checkpoint form /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth: 'layers.2.blocks.8.op.in_proj.weight'
--Return--
> /VMamba-main/classification/models/vmamba.py(1540)load_pretrained()->None
-> pdb.set_trace()
(Pdb) 
ttt0666 commented 1 week ago

如果我注释掉try..except,即:

#       try:
            _ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
            print(f"Successfully load ckpt {ckpt}")
            incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
            print(incompatibleKeys)
#       except Exception as e:
 #          print(f"Failed loading checkpoint form {ckpt}: {e}")

得到的log如下:


Successfully load ckpt /checkpoints/vmamba/vssm1_tiny_0230s_ckpt_epoch_264.pth
Traceback (most recent call last):
  File "tools/train.py", line 121, in <module>
    main()
  File "tools/train.py", line 110, in main
    runner = Runner.from_cfg(cfg)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/runner/runner.py", line 462, in from_cfg
    runner = cls(
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/runner/runner.py", line 429, in __init__
    self.model = self.build_model(model)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/runner/runner.py", line 836, in build_model
    model = MODELS.build(model)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/registry.py", line 570, in build
    return self.build_func(cfg, *args, **kwargs, registry=self)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg
    return build_from_cfg(cfg, registry, default_args)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg
    obj = obj_cls(**args)  # type: ignore
  File "/VMamba-main/mmdetection-main/mmdet/models/detectors/single_two_stage_nae.py", line 37, in __init__
    self.backbone = MODELS.build(backbone)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/registry.py", line 570, in build
    return self.build_func(cfg, *args, **kwargs, registry=self)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg
    return build_from_cfg(cfg, registry, default_args)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg
    obj = obj_cls(**args)  # type: ignore
  File "/VMamba-main/mmdetection-main/mmdet/models/backbones/vmamba.py", line 37, in __init__
    Backbone_VSSM.__init__(self, *args, **kwargs)
  File "/VMamba-main/classification/models/vmamba.py", line 1522, in __init__
    self.load_pretrained(pretrained)
  File "/VMamba-main/classification/models/vmamba.py", line 1530, in load_pretrained
    incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2027, in load_state_dict
    load(self, state_dict)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2015, in load
    load(child, child_state_dict, child_prefix)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2015, in load
    load(child, child_state_dict, child_prefix)
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2015, in load
    load(child, child_state_dict, child_prefix)
  [Previous line repeated 3 more times]
  File "/root/miniconda3/envs/vmamba/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2009, in load
    module._load_from_state_dict(
  File "/VMamba-main/classification/models/vmamba.py", line 50, in _load_from_state_dict
    state_dict[prefix + "weight"] = state_dict[prefix + "weight"].view(self.weight.shape)
KeyError: 'layers.2.blocks.8.op.in_proj.weight'
ttt0666 commented 1 week ago

我的vmamba.py代码是前几天下载的,如下:

import os
import pdb
import time
import math
import copy
from functools import partial
from typing import Optional, Callable, Any
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, trunc_normal_
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count, parameter_count
from torchvision.models import VisionTransformer

DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
# train speed is slower after enabling this opts.
# torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True

try:
    from .csm_triton import CrossScanTriton, CrossMergeTriton, CrossScanTriton1b1, getCSM
    from .csm_triton import CrossScanTritonF, CrossMergeTritonF, CrossScanTriton1b1F
    from .csms6s import CrossScan, CrossMerge
    from .csms6s import CrossScan_Ab_1direction, CrossMerge_Ab_1direction, CrossScan_Ab_2direction, CrossMerge_Ab_2direction
    from .csms6s import SelectiveScanMamba, SelectiveScanCore, SelectiveScanOflex
    from .csms6s import flops_selective_scan_fn, flops_selective_scan_ref, selective_scan_flop_jit
except:
    from csm_triton import CrossScanTriton, CrossMergeTriton, CrossScanTriton1b1, getCSM
    from csm_triton import CrossScanTritonF, CrossMergeTritonF, CrossScanTriton1b1F
    from csms6s import CrossScan, CrossMerge
    from csms6s import CrossScan_Ab_1direction, CrossMerge_Ab_1direction, CrossScan_Ab_2direction, CrossMerge_Ab_2direction
    from csms6s import SelectiveScanMamba, SelectiveScanCore, SelectiveScanOflex
    from csms6s import flops_selective_scan_fn, flops_selective_scan_ref, selective_scan_flop_jit

# =====================================================
# we have this class as linear and conv init differ from each other
# this function enable loading from both conv2d or linear
class Linear2d(nn.Linear):
    def forward(self, x: torch.Tensor):
        # B, C, H, W = x.shape
        return F.conv2d(x, self.weight[:, :, None, None], self.bias)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        # pdb.set_trace()
        state_dict[prefix + "weight"] = state_dict[prefix + "weight"].view(self.weight.shape)
        # try:
        #     state_dict[prefix + "weight"] = state_dict[prefix + "weight"].view(self.weight.shape)
        # except:
        #     pdb.set_trace()
        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

class LayerNorm2d(nn.LayerNorm):
    def forward(self, x: torch.Tensor):
        x = x.permute(0, 2, 3, 1)
        x = nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        x = x.permute(0, 3, 1, 2)
        return x

class PatchMerging2D(nn.Module):
    def __init__(self, dim, out_dim=-1, norm_layer=nn.LayerNorm, channel_first=False):
        super().__init__()
        self.dim = dim
        Linear = Linear2d if channel_first else nn.Linear
        self._patch_merging_pad = self._patch_merging_pad_channel_first if channel_first else self._patch_merging_pad_channel_last
        self.reduction = Linear(4 * dim, (2 * dim) if out_dim < 0 else out_dim, bias=False)
        self.norm = norm_layer(4 * dim)

    @staticmethod
    def _patch_merging_pad_channel_last(x: torch.Tensor):
        H, W, _ = x.shape[-3:]
        if (W % 2 != 0) or (H % 2 != 0):
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
        x0 = x[..., 0::2, 0::2, :]  # ... H/2 W/2 C
        x1 = x[..., 1::2, 0::2, :]  # ... H/2 W/2 C
        x2 = x[..., 0::2, 1::2, :]  # ... H/2 W/2 C
        x3 = x[..., 1::2, 1::2, :]  # ... H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # ... H/2 W/2 4*C
        return x

    @staticmethod
    def _patch_merging_pad_channel_first(x: torch.Tensor):
        H, W = x.shape[-2:]
        if (W % 2 != 0) or (H % 2 != 0):
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
        x0 = x[..., 0::2, 0::2]  # ... H/2 W/2
        x1 = x[..., 1::2, 0::2]  # ... H/2 W/2
        x2 = x[..., 0::2, 1::2]  # ... H/2 W/2
        x3 = x[..., 1::2, 1::2]  # ... H/2 W/2
        x = torch.cat([x0, x1, x2, x3], 1)  # ... H/2 W/2 4*C
        return x

    def forward(self, x):
        x = self._patch_merging_pad(x)
        x = self.norm(x)
        x = self.reduction(x)

        return x

class Permute(nn.Module):
    def __init__(self, *args):
        super().__init__()
        self.args = args

    def forward(self, x: torch.Tensor):
        return x.permute(*self.args)

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=False):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        Linear = Linear2d if channels_first else nn.Linear
        self.fc1 = Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class gMlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=False):
        super().__init__()
        self.channel_first = channels_first
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        Linear = Linear2d if channels_first else nn.Linear
        self.fc1 = Linear(in_features, 2 * hidden_features)
        self.act = act_layer()
        self.fc2 = Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x: torch.Tensor):
        x = self.fc1(x)
        x, z = x.chunk(2, dim=(1 if self.channel_first else -1))
        x = self.fc2(x * self.act(z))
        x = self.drop(x)
        return x

class SoftmaxSpatial(nn.Softmax):
    def forward(self, x: torch.Tensor):
        if self.dim == -1:
            B, C, H, W = x.shape
            return super().forward(x.view(B, C, -1)).view(B, C, H, W)
        elif self.dim == 1:
            B, H, W, C = x.shape
            return super().forward(x.view(B, -1, C)).view(B, H, W, C)
        else:
            raise NotImplementedError

# =====================================================
class mamba_init:
    @staticmethod
    def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4):
        dt_proj = nn.Linear(dt_rank, d_inner, bias=True)

        # Initialize special dt projection to preserve variance at initialization
        dt_init_std = dt_rank**-0.5 * dt_scale
        if dt_init == "constant":
            nn.init.constant_(dt_proj.weight, dt_init_std)
        elif dt_init == "random":
            nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
        else:
            raise NotImplementedError

        # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
        dt = torch.exp(
            torch.rand(d_inner) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        ).clamp(min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        with torch.no_grad():
            dt_proj.bias.copy_(inv_dt)
        # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
        # dt_proj.bias._no_reinit = True

        return dt_proj

    @staticmethod
    def A_log_init(d_state, d_inner, copies=-1, device=None, merge=True):
        # S4D real initialization
        A = repeat(
            torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
            "n -> d n",
            d=d_inner,
        ).contiguous()
        A_log = torch.log(A)  # Keep A_log in fp32
        if copies > 0:
            A_log = repeat(A_log, "d n -> r d n", r=copies)
            if merge:
                A_log = A_log.flatten(0, 1)
        A_log = nn.Parameter(A_log)
        A_log._no_weight_decay = True
        return A_log

    @staticmethod
    def D_init(d_inner, copies=-1, device=None, merge=True):
        # D "skip" parameter
        D = torch.ones(d_inner, device=device)
        if copies > 0:
            D = repeat(D, "n1 -> r n1", r=copies)
            if merge:
                D = D.flatten(0, 1)
        D = nn.Parameter(D)  # Keep in fp32
        D._no_weight_decay = True
        return D

# support: v0, v0seq
class SS2Dv0:
    def __initv0__(
        self,
        # basic dims ===========
        d_model=96,
        d_state=16,
        ssm_ratio=2.0,
        dt_rank="auto",
        # ======================
        dropout=0.0,
        # ======================
        seq=False,
        force_fp32=True,
        **kwargs,
    ):
        if "channel_first" in kwargs:
            assert not kwargs["channel_first"]
        act_layer = nn.SiLU
        dt_min = 0.001
        dt_max = 0.1
        dt_init = "random"
        dt_scale = 1.0
        dt_init_floor = 1e-4
        bias = False
        conv_bias = True
        d_conv = 3
        k_group = 4
        factory_kwargs = {"device": None, "dtype": None}
        super().__init__()
        d_inner = int(ssm_ratio * d_model)
        dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank

        self.forward = self.forwardv0 
        if seq:
            self.forward = partial(self.forwardv0, seq=True)
        if not force_fp32:
            self.forward = partial(self.forwardv0, force_fp32=False)

        # in proj ============================
        self.in_proj = nn.Linear(d_model, d_inner * 2, bias=bias)
        self.act: nn.Module = act_layer()
        self.conv2d = nn.Conv2d(
            in_channels=d_inner,
            out_channels=d_inner,
            groups=d_inner,
            bias=conv_bias,
            kernel_size=d_conv,
            padding=(d_conv - 1) // 2,
            **factory_kwargs,
        )

        # x proj ============================
        self.x_proj = [
            nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False)
            for _ in range(k_group)
        ]
        self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K, N, inner)
        del self.x_proj

        # dt proj ============================
        self.dt_projs = [
            self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor)
            for _ in range(k_group)
        ]
        self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K, inner, rank)
        self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K, inner)
        del self.dt_projs

        # A, D =======================================
        self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) # (K * D, N)
        self.Ds = self.D_init(d_inner, copies=k_group, merge=True) # (K * D)     

        # out proj =======================================
        self.out_norm = nn.LayerNorm(d_inner)
        self.out_proj = nn.Linear(d_inner, d_model, bias=bias)
        self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity()

    def forwardv0(self, x: torch.Tensor, SelectiveScan = SelectiveScanMamba, seq=False, force_fp32=True, **kwargs):
        x = self.in_proj(x)
        x, z = x.chunk(2, dim=-1) # (b, h, w, d)
        z = self.act(z)
        x = x.permute(0, 3, 1, 2).contiguous()
        x = self.conv2d(x) # (b, d, h, w)
        x = self.act(x)

        def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True, nrows=1):
            return SelectiveScan.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, nrows, False)

        B, D, H, W = x.shape
        D, N = self.A_logs.shape
        K, D, R = self.dt_projs_weight.shape
        L = H * W

        x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
        xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)

        x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight)
        # x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
        dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
        dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight)

        xs = xs.view(B, -1, L) # (b, k * d, l)
        dts = dts.contiguous().view(B, -1, L) # (b, k * d, l)
        Bs = Bs.contiguous() # (b, k, d_state, l)
        Cs = Cs.contiguous() # (b, k, d_state, l)

        As = -torch.exp(self.A_logs.float()) # (k * d, d_state)
        Ds = self.Ds.float() # (k * d)
        dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)

        # assert len(xs.shape) == 3 and len(dts.shape) == 3 and len(Bs.shape) == 4 and len(Cs.shape) == 4
        # assert len(As.shape) == 2 and len(Ds.shape) == 1 and len(dt_projs_bias.shape) == 1
        to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)

        if force_fp32:
            xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)

        if seq:
            out_y = []
            for i in range(4):
                yi = selective_scan(
                    xs.view(B, K, -1, L)[:, i], dts.view(B, K, -1, L)[:, i], 
                    As.view(K, -1, N)[i], Bs[:, i].unsqueeze(1), Cs[:, i].unsqueeze(1), Ds.view(K, -1)[i],
                    delta_bias=dt_projs_bias.view(K, -1)[i],
                    delta_softplus=True,
                ).view(B, -1, L)
                out_y.append(yi)
            out_y = torch.stack(out_y, dim=1)
        else:
            out_y = selective_scan(
                xs, dts, 
                As, Bs, Cs, Ds,
                delta_bias=dt_projs_bias,
                delta_softplus=True,
            ).view(B, K, -1, L)
        assert out_y.dtype == torch.float

        inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
        wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
        invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
        y = out_y[:, 0] + inv_y[:, 0] + wh_y + invwh_y

        y = y.transpose(dim0=1, dim1=2).contiguous() # (B, L, C)
        y = self.out_norm(y).view(B, H, W, -1)

        y = y * z
        out = self.dropout(self.out_proj(y))
        return out

# support: v01-v05; v051d,v052d,v052dc; 
# postfix: _onsigmoid,_onsoftmax,_ondwconv3,_onnone;_nozact,_noz;_oact;_no32;
# history support: v2,v3;v31d,v32d,v32dc;
class SS2Dv2:
    def __initv2__(
        self,
        # basic dims ===========
        d_model=96,
        d_state=16,
        ssm_ratio=2.0,
        dt_rank="auto",
        act_layer=nn.SiLU,
        # dwconv ===============
        d_conv=3, # < 2 means no conv 
        conv_bias=True,
        # ======================
        dropout=0.0,
        bias=False,
        # dt init ==============
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        initialize="v0",
        # ======================
        forward_type="v2",
        channel_first=False,
        # ======================
        **kwargs,    
    ):
        factory_kwargs = {"device": None, "dtype": None}
        super().__init__()
        d_inner = int(ssm_ratio * d_model)
        dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank
        self.channel_first = channel_first
        self.with_dconv = d_conv > 1
        Linear = Linear2d if channel_first else nn.Linear
        LayerNorm = LayerNorm2d if channel_first else nn.LayerNorm
        self.forward = self.forwardv2

        # tags for forward_type ==============================
        def checkpostfix(tag, value):
            ret = value[-len(tag):] == tag
            if ret:
                value = value[:-len(tag)]
            return ret, value

        self.disable_force32, forward_type = checkpostfix("_no32", forward_type)
        self.oact, forward_type = checkpostfix("_oact", forward_type)
        self.disable_z, forward_type = checkpostfix("_noz", forward_type)
        self.disable_z_act, forward_type = checkpostfix("_nozact", forward_type)
        out_norm_none, forward_type = checkpostfix("_onnone", forward_type)
        out_norm_dwconv3, forward_type = checkpostfix("_ondwconv3", forward_type)
        out_norm_cnorm, forward_type = checkpostfix("_oncnorm", forward_type)
        out_norm_softmax, forward_type = checkpostfix("_onsoftmax", forward_type)
        out_norm_sigmoid, forward_type = checkpostfix("_onsigmoid", forward_type)

        if out_norm_none:
            self.out_norm = nn.Identity()
        elif out_norm_cnorm:
            self.out_norm = nn.Sequential(
                LayerNorm(d_inner),
                (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
                nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
                (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            )
        elif out_norm_dwconv3:
            self.out_norm = nn.Sequential(
                (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
                nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
                (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            )
        elif out_norm_softmax:
            self.out_norm = SoftmaxSpatial(dim=(-1 if channel_first else 1))
        elif out_norm_sigmoid:
            self.out_norm = nn.Sigmoid()
        else:
            self.out_norm = LayerNorm(d_inner)

        # forward_type debug =======================================
        FORWARD_TYPES = dict(
            v01=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanMamba), # will be deleted in the future
            v02=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanMamba, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton),
            v03=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanOflex, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton),
            v04=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton),
            v05=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton),
            # ===============================
            v051d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, CrossScan=getCSM(1)[0], CrossMerge=getCSM(1)[1],
            ),
            v052d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, CrossScan=getCSM(2)[0], CrossMerge=getCSM(2)[1],
            ),
            v052dc=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, cascade2d=True),
            # ===============================
            v2=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanCore),
            v3=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex),
            # v1=partial(self.forward_corev2, force_fp32=True, SelectiveScan=SelectiveScanOflex),
            # v4=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton),
            # ===============================
            v31d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, CrossScan=CrossScan_Ab_1direction, CrossMerge=CrossMerge_Ab_1direction,
            ),
            v32d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, CrossScan=CrossScan_Ab_2direction, CrossMerge=CrossMerge_Ab_2direction,
            ),
            v32dc=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, cascade2d=True),
        )
        self.forward_core = FORWARD_TYPES.get(forward_type, None)
        k_group = 4

        # in proj =======================================
        d_proj = d_inner if self.disable_z else (d_inner * 2)
        self.in_proj = Linear(d_model, d_proj, bias=bias)
        self.act: nn.Module = act_layer()

        # conv =======================================
        if self.with_dconv:
            self.conv2d = nn.Conv2d(
                in_channels=d_inner,
                out_channels=d_inner,
                groups=d_inner,
                bias=conv_bias,
                kernel_size=d_conv,
                padding=(d_conv - 1) // 2,
                **factory_kwargs,
            )

        # x proj ============================
        self.x_proj = [
            nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False)
            for _ in range(k_group)
        ]
        self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K, N, inner)
        del self.x_proj

        # out proj =======================================
        self.out_act = nn.GELU() if self.oact else nn.Identity()
        self.out_proj = Linear(d_inner, d_model, bias=bias)
        self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity()

        if initialize in ["v0"]:
            # dt proj ============================
            self.dt_projs = [
                self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor)
                for _ in range(k_group)
            ]
            self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K, inner, rank)
            self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K, inner)
            del self.dt_projs

            # A, D =======================================
            self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) # (K * D, N)
            self.Ds = self.D_init(d_inner, copies=k_group, merge=True) # (K * D)
        elif initialize in ["v1"]:
            # simple init dt_projs, A_logs, Ds
            self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
            self.A_logs = nn.Parameter(torch.randn((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
            self.dt_projs_weight = nn.Parameter(0.1 * torch.randn((k_group, d_inner, dt_rank))) # 0.1 is added in 0430
            self.dt_projs_bias = nn.Parameter(0.1 * torch.randn((k_group, d_inner))) # 0.1 is added in 0430
        elif initialize in ["v2"]:
            # simple init dt_projs, A_logs, Ds
            self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
            self.A_logs = nn.Parameter(torch.zeros((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
            self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((k_group, d_inner, dt_rank)))
            self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, d_inner)))

    def forward_corev2(
        self,
        x: torch.Tensor=None, 
        # ==============================
        to_dtype=True, # True: final out to dtype
        force_fp32=False, # True: input fp32
        # ==============================
        ssoflex=True, # True: out fp32 in SSOflex; else, SSOflex is the same as SSCore
        # ==============================
        SelectiveScan=SelectiveScanOflex,
        CrossScan=CrossScan,
        CrossMerge=CrossMerge,
        no_einsum=False, # replace einsum with linear or conv1d to raise throughput
        # ==============================
        cascade2d=False,
        **kwargs,
    ):
        x_proj_weight = self.x_proj_weight
        x_proj_bias = getattr(self, "x_proj_bias", None)
        dt_projs_weight = self.dt_projs_weight
        dt_projs_bias = self.dt_projs_bias
        A_logs = self.A_logs
        Ds = self.Ds
        delta_softplus = True
        out_norm = getattr(self, "out_norm", None)
        channel_first = self.channel_first
        to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)

        B, D, H, W = x.shape
        D, N = A_logs.shape
        K, D, R = dt_projs_weight.shape
        L = H * W

        def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True):
            return SelectiveScan.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, -1, -1, ssoflex)

        if cascade2d:
            def scan_rowcol(
                x: torch.Tensor, 
                proj_weight: torch.Tensor, 
                proj_bias: torch.Tensor, 
                dt_weight: torch.Tensor, 
                dt_bias: torch.Tensor, # (2*c)
                _As: torch.Tensor, # As = -torch.exp(A_logs.to(torch.float))[:2,] # (2*c, d_state)
                _Ds: torch.Tensor,
                width = True,
            ):
                # x: (B, D, H, W)
                # proj_weight: (2 * D, (R+N+N))
                XB, XD, XH, XW = x.shape
                if width:
                    _B, _D, _L = XB * XH, XD, XW
                    xs = x.permute(0, 2, 1, 3).contiguous()
                else:
                    _B, _D, _L = XB * XW, XD, XH
                    xs = x.permute(0, 3, 1, 2).contiguous()
                xs = torch.stack([xs, xs.flip(dims=[-1])], dim=2) # (B, H, 2, D, W)
                if no_einsum:
                    x_dbl = F.conv1d(xs.view(_B, -1, _L), proj_weight.view(-1, _D, 1), bias=(proj_bias.view(-1) if proj_bias is not None else None), groups=2)
                    dts, Bs, Cs = torch.split(x_dbl.view(_B, 2, -1, _L), [R, N, N], dim=2)
                    dts = F.conv1d(dts.contiguous().view(_B, -1, _L), dt_weight.view(2 * _D, -1, 1), groups=2)
                else:
                    x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, proj_weight)
                    if x_proj_bias is not None:
                        x_dbl = x_dbl + x_proj_bias.view(1, 2, -1, 1)
                    dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
                    dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_weight)

                xs = xs.view(_B, -1, _L)
                dts = dts.contiguous().view(_B, -1, _L)
                As = _As.view(-1, N).to(torch.float)
                Bs = Bs.contiguous().view(_B, 2, N, _L)
                Cs = Cs.contiguous().view(_B, 2, N, _L)
                Ds = _Ds.view(-1)
                delta_bias = dt_bias.view(-1).to(torch.float)

                if force_fp32:
                    xs = xs.to(torch.float)
                dts = dts.to(xs.dtype)
                Bs = Bs.to(xs.dtype)
                Cs = Cs.to(xs.dtype)

                ys: torch.Tensor = selective_scan(
                    xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
                ).view(_B, 2, -1, _L)
                return ys

            As = -torch.exp(A_logs.to(torch.float)).view(4, -1, N)
            x = F.layer_norm(x.permute(0, 2, 3, 1), normalized_shape=(int(x.shape[1]),)).permute(0, 3, 1, 2).contiguous() # added0510 to avoid nan
            y_row = scan_rowcol(
                x,
                proj_weight = x_proj_weight.view(4, -1, D)[:2].contiguous(), 
                proj_bias = (x_proj_bias.view(4, -1)[:2].contiguous() if x_proj_bias is not None else None),
                dt_weight = dt_projs_weight.view(4, D, -1)[:2].contiguous(),
                dt_bias = (dt_projs_bias.view(4, -1)[:2].contiguous() if dt_projs_bias is not None else None),
                _As = As[:2].contiguous().view(-1, N),
                _Ds = Ds.view(4, -1)[:2].contiguous().view(-1),
                width=True,
            ).view(B, H, 2, -1, W).sum(dim=2).permute(0, 2, 1, 3) # (B,C,H,W)
            y_row = F.layer_norm(y_row.permute(0, 2, 3, 1), normalized_shape=(int(y_row.shape[1]),)).permute(0, 3, 1, 2).contiguous() # added0510 to avoid nan
            y_col = scan_rowcol(
                y_row,
                proj_weight = x_proj_weight.view(4, -1, D)[2:].contiguous().to(y_row.dtype), 
                proj_bias = (x_proj_bias.view(4, -1)[2:].contiguous().to(y_row.dtype) if x_proj_bias is not None else None),
                dt_weight = dt_projs_weight.view(4, D, -1)[2:].contiguous().to(y_row.dtype),
                dt_bias = (dt_projs_bias.view(4, -1)[2:].contiguous().to(y_row.dtype) if dt_projs_bias is not None else None),
                _As = As[2:].contiguous().view(-1, N),
                _Ds = Ds.view(4, -1)[2:].contiguous().view(-1),
                width=False,
            ).view(B, W, 2, -1, H).sum(dim=2).permute(0, 2, 3, 1)
            y = y_col
        else:
            xs = CrossScan.apply(x)
            if no_einsum:
                x_dbl = F.conv1d(xs.view(B, -1, L), x_proj_weight.view(-1, D, 1), bias=(x_proj_bias.view(-1) if x_proj_bias is not None else None), groups=K)
                dts, Bs, Cs = torch.split(x_dbl.view(B, K, -1, L), [R, N, N], dim=2)
                dts = F.conv1d(dts.contiguous().view(B, -1, L), dt_projs_weight.view(K * D, -1, 1), groups=K)
            else:
                x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, x_proj_weight)
                if x_proj_bias is not None:
                    x_dbl = x_dbl + x_proj_bias.view(1, K, -1, 1)
                dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
                dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_projs_weight)

            xs = xs.view(B, -1, L)
            dts = dts.contiguous().view(B, -1, L)
            As = -torch.exp(A_logs.to(torch.float)) # (k * c, d_state)
            Bs = Bs.contiguous().view(B, K, N, L)
            Cs = Cs.contiguous().view(B, K, N, L)
            Ds = Ds.to(torch.float) # (K * c)
            delta_bias = dt_projs_bias.view(-1).to(torch.float)

            if force_fp32:
                xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)

            ys: torch.Tensor = selective_scan(
                xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
            ).view(B, K, -1, H, W)

            y: torch.Tensor = CrossMerge.apply(ys)

            if getattr(self, "__DEBUG__", False):
                setattr(self, "__data__", dict(
                    A_logs=A_logs, Bs=Bs, Cs=Cs, Ds=Ds,
                    us=xs, dts=dts, delta_bias=delta_bias,
                    ys=ys, y=y, H=H, W=W,
                ))

        y = y.view(B, -1, H, W)
        if not channel_first:
            y = y.view(B, -1, H * W).transpose(dim0=1, dim1=2).contiguous().view(B, H, W, -1) # (B, L, C)
        y = out_norm(y)

        return (y.to(x.dtype) if to_dtype else y)

    def forwardv2(self, x: torch.Tensor, **kwargs):
        x = self.in_proj(x)
        if not self.disable_z:
            x, z = x.chunk(2, dim=(1 if self.channel_first else -1)) # (b, h, w, d)
            if not self.disable_z_act:
                z = self.act(z)
        if not self.channel_first:
            x = x.permute(0, 3, 1, 2).contiguous()
        if self.with_dconv:
            x = self.conv2d(x) # (b, d, h, w)
        x = self.act(x)
        y = self.forward_core(x)
        y = self.out_act(y)
        if not self.disable_z:
            y = y * z
        out = self.dropout(self.out_proj(y))
        return out

# support: xv1a,xv2a,xv3a; 
# postfix: _cpos;_ocov;_ocov2;_ca,_ca1;_act;_mul;_onsigmoid,_onsoftmax,_ondwconv3,_onnone;
class SS2Dv3:
    def __initxv__(
        self,
        # basic dims ===========
        d_model=96,
        d_state=16,
        ssm_ratio=2.0,
        dt_rank="auto",
        # dwconv ===============
        d_conv=3, # < 2 means no conv 
        conv_bias=True,
        # ======================
        dropout=0.0,
        bias=False,
        # dt init ==============
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        initialize="v0",
        # ======================
        forward_type="v2",
        channel_first=False,
        # ======================
        **kwargs,
    ):
        super().__init__()
        d_inner = int(ssm_ratio * d_model)
        dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank
        self.channel_first = channel_first
        self.d_state = d_state
        self.dt_rank = dt_rank
        self.d_inner = d_inner
        k_group = 4
        self.with_dconv = d_conv > 1
        Linear = Linear2d if channel_first else nn.Linear
        LayerNorm = LayerNorm2d if channel_first else nn.LayerNorm
        self.forward = self.forwardxv

        # tags for forward_type ==============================
        def checkpostfix(tag, value):
            ret = value[-len(tag):] == tag
            if ret:
                value = value[:-len(tag)]
            return ret, value

        out_norm_none, forward_type = checkpostfix("_onnone", forward_type)
        out_norm_dwconv3, forward_type = checkpostfix("_ondwconv3", forward_type)
        out_norm_cnorm, forward_type = checkpostfix("_oncnorm", forward_type)
        out_norm_softmax, forward_type = checkpostfix("_onsoftmax", forward_type)
        out_norm_sigmoid, forward_type = checkpostfix("_onsigmoid", forward_type)

        if out_norm_none:
            self.out_norm = nn.Identity()
        elif out_norm_cnorm:
            self.out_norm = nn.Sequential(
                LayerNorm(d_inner),
                (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
                nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
                (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            )
        elif out_norm_dwconv3:
            self.out_norm = nn.Sequential(
                (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
                nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
                (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            )
        elif out_norm_softmax:
            self.out_norm = SoftmaxSpatial(dim=(-1 if channel_first else 1))
        elif out_norm_sigmoid:
            self.out_norm = nn.Sigmoid()
        else:
            self.out_norm = LayerNorm(d_inner)

        # in proj =======================================
        self.omul, forward_type = checkpostfix("_mul", forward_type)
        self.oact, forward_type = checkpostfix("_act", forward_type)
        self.f_omul = nn.Identity() if self.omul else None
        self.out_act = nn.GELU() if self.oact else nn.Identity()

        mode = forward_type[:4]
        assert mode in ["xv1a", "xv2a", "xv3a"]

        self.forward = partial(self.forwardxv, mode=mode)
        self.dts_dim = dict(xv1a=self.dt_rank, xv2a=self.d_inner, xv3a=4 * self.dt_rank)[mode]
        d_inner_all = d_inner + self.dts_dim + 8 * d_state
        self.in_proj = Linear(d_model, d_inner_all, bias=bias)

        # conv =======================================
        self.cpos = False
        self.iconv = False
        self.oconv = False
        self.oconv2 = False
        if self.with_dconv:
            cact, forward_type = checkpostfix("_ca", forward_type)
            cact1, forward_type = checkpostfix("_ca1", forward_type)
            self.cact = nn.SiLU() if cact else nn.Identity()
            self.cact = nn.GELU() if cact1 else self.cact

            self.oconv2, forward_type = checkpostfix("_ocov2", forward_type)
            self.oconv, forward_type = checkpostfix("_ocov", forward_type)
            self.cpos, forward_type = checkpostfix("_cpos", forward_type)
            self.iconv = (not self.oconv) and (not self.oconv2)

            if self.iconv:
                self.conv2d = nn.Conv2d(
                    in_channels=d_model,
                    out_channels=d_model,
                    groups=d_model,
                    bias=conv_bias,
                    kernel_size=d_conv,
                    padding=(d_conv - 1) // 2,
                )
            if self.oconv:
                self.oconv2d = nn.Conv2d(
                    in_channels=d_inner,
                    out_channels=d_inner,
                    groups=d_inner,
                    bias=conv_bias,
                    kernel_size=d_conv,
                    padding=(d_conv - 1) // 2,
                )
            if self.oconv2:
                self.conv2d = nn.Conv2d(
                    in_channels=d_inner_all,
                    out_channels=d_inner_all,
                    groups=d_inner_all,
                    bias=conv_bias,
                    kernel_size=d_conv,
                    padding=(d_conv - 1) // 2,
                )

        # out proj =======================================
        self.out_proj = Linear(d_inner, d_model, bias=bias)
        self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity()

        if initialize in ["v0"]:
            # dt proj ============================
            self.dt_projs = [
                self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor)
                for _ in range(k_group)
            ]
            self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K, inner, rank)
            self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K, inner)
            del self.dt_projs

            # A, D =======================================
            self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) # (K * D, N)
            self.Ds = self.D_init(d_inner, copies=k_group, merge=True) # (K * D)
        elif initialize in ["v1"]:
            # simple init dt_projs, A_logs, Ds
            self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
            self.A_logs = nn.Parameter(torch.randn((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
            self.dt_projs_weight = nn.Parameter(torch.randn((k_group, d_inner, dt_rank)))
            self.dt_projs_bias = nn.Parameter(torch.randn((k_group, d_inner))) 
        elif initialize in ["v2"]:
            # simple init dt_projs, A_logs, Ds
            self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
            self.A_logs = nn.Parameter(torch.zeros((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
            self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((k_group, d_inner, dt_rank)))
            self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, d_inner)))
        else:
            raise NotImplementedError

        if forward_type.startswith("xv2"):
            del self.dt_projs_weight
            self.dt_projs_weight = None

    def forwardxv(self, x: torch.Tensor, **kwargs):
        B, (H, W) = x.shape[0], (x.shape[2:4] if self.channel_first else x.shape[1:3])
        L = H * W
        dt_projs_weight = self.dt_projs_weight
        A_logs = self.A_logs
        dt_projs_bias = self.dt_projs_bias
        force_fp32 = False
        delta_softplus = True
        out_norm = self.out_norm
        to_dtype = True
        Ds = self.Ds

        to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)

        def selective_scan(u, delta, A, B, C, D, delta_bias, delta_softplus):
            return SelectiveScanOflex.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, 1, 1, True)

        if self.iconv:
            x = self.cact(self.conv2d(x)) # (b, d, h, w)
        elif self.cpos:
            x = x + self.conv2d(x) # (b, d, h, w)

        x = self.in_proj(x)

        if self.oconv2:
            x = self.conv2d(x) # (b, d, h, w)

        us, dts, Bs, Cs = x.split([self.d_inner, self.dts_dim, 4 * self.d_state, 4 * self.d_state], dim=(1 if self.channel_first else -1))

        _us = us
        if self.channel_first:
            Bs, Cs = Bs.view(B, 4, -1, H, W), Cs.view(B, 4, -1, H, W)
            us = CrossScanTriton.apply(us.contiguous()).view(B, -1, L)
            Bs = CrossScanTriton1b1.apply(Bs.contiguous()).view(B, 4, -1, L)
            Cs = CrossScanTriton1b1.apply(Cs.contiguous()).view(B, 4, -1, L)

            if self.dts_dim == self.dt_rank:
                dts = CrossScanTriton.apply(dts.contiguous()).view(B, -1, L)
                dts = F.conv1d(dts, dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)
            elif self.dts_dim == self.d_inner:
                dts = CrossScanTriton.apply(dts.contiguous()).view(B, -1, L)
            elif self.dts_dim == 4 * self.dt_rank:
                dts = dts.view(B, 4, -1, H, W)
                dts = CrossScanTriton1b1.apply(dts.contiguous()).view(B, -1, L)
                dts = F.conv1d(dts, dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)

        else:
            Bs, Cs = Bs.view(B, H, W, 4, -1), Cs.view(B, H, W, 4, -1)
            us = CrossScanTritonF.apply(us.contiguous(), self.channel_first).view(B, -1, L)
            Bs = CrossScanTriton1b1F.apply(Bs.contiguous(), self.channel_first).view(B, 4, -1, L)
            Cs = CrossScanTriton1b1F.apply(Cs.contiguous(), self.channel_first).view(B, 4, -1, L)

            if self.dts_dim == self.dt_rank:
                dts = CrossScanTritonF.apply(dts.contiguous(), self.channel_first).view(B, -1, L)
                dts = F.conv1d(dts, dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)
            elif self.dts_dim == self.d_inner:
                dts = CrossScanTritonF.apply(dts.contiguous(), self.channel_first).view(B, -1, L)
            elif self.dts_dim == 4 * self.dt_rank:
                dts = dts.view(B, H, W, 4, -1)
                dts = CrossScanTriton1b1F.apply(dts.contiguous(), self.channel_first).view(B, -1, L)
                dts = F.conv1d(dts, dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)

        As = -torch.exp(A_logs.to(torch.float)) # (k * c, d_state)
        Ds = Ds.to(torch.float) # (K * c)
        delta_bias = dt_projs_bias.view(-1).to(torch.float) # (K * c)

        if force_fp32:
            us, dts, Bs, Cs = to_fp32(us, dts, Bs, Cs)

        ys: torch.Tensor = selective_scan(
            us, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
        ).view(B, 4, -1, H, W)

        if self.channel_first:    
            y: torch.Tensor = CrossMergeTriton.apply(ys).view(B, -1, H, W)
        else:
            y: torch.Tensor = CrossMergeTritonF.apply(ys, self.channel_first).view(B, H, W, -1)
        y = out_norm(y)

        if getattr(self, "__DEBUG__", False):
            setattr(self, "__data__", dict(
                A_logs=A_logs, Bs=Bs, Cs=Cs, Ds=Ds,
                us=us, dts=dts, delta_bias=delta_bias,
                ys=ys, y=y,
            ))

        y = (y.to(x.dtype) if to_dtype else y)

        y = self.out_act(y)

        if self.omul:
            y = y * _us

        if self.oconv:
            y = y + self.cact(self.oconv2d(_us))

        out = self.dropout(self.out_proj(y))
        return out

class SS2D(nn.Module, mamba_init, SS2Dv0, SS2Dv2, SS2Dv3):
    def __init__(
        self,
        # basic dims ===========
        d_model=96,
        d_state=16,
        ssm_ratio=2.0,
        dt_rank="auto",
        act_layer=nn.SiLU,
        # dwconv ===============
        d_conv=3, # < 2 means no conv 
        conv_bias=True,
        # ======================
        dropout=0.0,
        bias=False,
        # dt init ==============
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        initialize="v0",
        # ======================
        forward_type="v2",
        channel_first=False,
        # ======================
        **kwargs,
    ):
        super().__init__()
        kwargs.update(
            d_model=d_model, d_state=d_state, ssm_ratio=ssm_ratio, dt_rank=dt_rank,
            act_layer=act_layer, d_conv=d_conv, conv_bias=conv_bias, dropout=dropout, bias=bias,
            dt_min=dt_min, dt_max=dt_max, dt_init=dt_init, dt_scale=dt_scale, dt_init_floor=dt_init_floor,
            initialize=initialize, forward_type=forward_type, channel_first=channel_first,
        )
        if forward_type in ["v0", "v0seq"]:
            self.__initv0__(seq=("seq" in forward_type), **kwargs)
        elif forward_type.startswith("xv"):
            self.__initxv__(**kwargs)
        else:
            self.__initv2__(**kwargs)

# =====================================================
class VSSBlock(nn.Module):
    def __init__(
        self,
        hidden_dim: int = 0,
        drop_path: float = 0,
        norm_layer: nn.Module = nn.LayerNorm,
        channel_first=False,
        # =============================
        ssm_d_state: int = 16,
        ssm_ratio=2.0,
        ssm_dt_rank: Any = "auto",
        ssm_act_layer=nn.SiLU,
        ssm_conv: int = 3,
        ssm_conv_bias=True,
        ssm_drop_rate: float = 0,
        ssm_init="v0",
        forward_type="v2",
        # =============================
        mlp_ratio=4.0,
        mlp_act_layer=nn.GELU,
        mlp_drop_rate: float = 0.0,
        gmlp=False,
        # =============================
        use_checkpoint: bool = False,
        post_norm: bool = False,
        **kwargs,
    ):
        super().__init__()
        self.ssm_branch = ssm_ratio > 0
        self.mlp_branch = mlp_ratio > 0
        self.use_checkpoint = use_checkpoint
        self.post_norm = post_norm

        if self.ssm_branch:
            self.norm = norm_layer(hidden_dim)
            self.op = SS2D(
                d_model=hidden_dim, 
                d_state=ssm_d_state, 
                ssm_ratio=ssm_ratio,
                dt_rank=ssm_dt_rank,
                act_layer=ssm_act_layer,
                # ==========================
                d_conv=ssm_conv,
                conv_bias=ssm_conv_bias,
                # ==========================
                dropout=ssm_drop_rate,
                # bias=False,
                # ==========================
                # dt_min=0.001,
                # dt_max=0.1,
                # dt_init="random",
                # dt_scale="random",
                # dt_init_floor=1e-4,
                initialize=ssm_init,
                # ==========================
                forward_type=forward_type,
                channel_first=channel_first,
            )

        self.drop_path = DropPath(drop_path)

        if self.mlp_branch:
            _MLP = Mlp if not gmlp else gMlp
            self.norm2 = norm_layer(hidden_dim)
            mlp_hidden_dim = int(hidden_dim * mlp_ratio)
            self.mlp = _MLP(in_features=hidden_dim, hidden_features=mlp_hidden_dim, act_layer=mlp_act_layer, drop=mlp_drop_rate, channels_first=channel_first)

    def _forward(self, input: torch.Tensor):
        x = input
        if self.ssm_branch:
            if self.post_norm:
                x = x + self.drop_path(self.norm(self.op(x)))
            else:
                x = x + self.drop_path(self.op(self.norm(x)))
        if self.mlp_branch:
            if self.post_norm:
                x = x + self.drop_path(self.norm2(self.mlp(x))) # FFN
            else:
                x = x + self.drop_path(self.mlp(self.norm2(x))) # FFN
        return x

    def forward(self, input: torch.Tensor):
        if self.use_checkpoint:
            return checkpoint.checkpoint(self._forward, input)
        else:
            return self._forward(input)

class VSSM(nn.Module):
    def __init__(
        self, 
        patch_size=4, 
        in_chans=3, 
        num_classes=1000, 
        depths=[2, 2, 9, 2], 
        dims=[96, 192, 384, 768], 
        # =========================
        ssm_d_state=16,
        ssm_ratio=2.0,
        ssm_dt_rank="auto",
        ssm_act_layer="silu",        
        ssm_conv=3,
        ssm_conv_bias=True,
        ssm_drop_rate=0.0, 
        ssm_init="v0",
        forward_type="v2",
        # =========================
        mlp_ratio=4.0,
        mlp_act_layer="gelu",
        mlp_drop_rate=0.0,
        gmlp=False,
        # =========================
        drop_path_rate=0.1, 
        patch_norm=True, 
        norm_layer="LN", # "BN", "LN2D"
        downsample_version: str = "v2", # "v1", "v2", "v3"
        patchembed_version: str = "v1", # "v1", "v2"
        use_checkpoint=False,  
        # =========================
        posembed=False,
        imgsize=224,
        **kwargs,
    ):
        super().__init__()
        self.channel_first = (norm_layer.lower() in ["bn", "ln2d"])
        self.num_classes = num_classes
        self.num_layers = len(depths)
        if isinstance(dims, int):
            dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)]
        self.num_features = dims[-1]
        self.dims = dims
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        _NORMLAYERS = dict(
            ln=nn.LayerNorm,
            ln2d=LayerNorm2d,
            bn=nn.BatchNorm2d,
        )

        _ACTLAYERS = dict(
            silu=nn.SiLU, 
            gelu=nn.GELU, 
            relu=nn.ReLU, 
            sigmoid=nn.Sigmoid,
        )

        norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None)
        ssm_act_layer: nn.Module = _ACTLAYERS.get(ssm_act_layer.lower(), None)
        mlp_act_layer: nn.Module = _ACTLAYERS.get(mlp_act_layer.lower(), None)

        self.pos_embed = self._pos_embed(dims[0], patch_size, imgsize) if posembed else None

        _make_patch_embed = dict(
            v1=self._make_patch_embed, 
            v2=self._make_patch_embed_v2,
        ).get(patchembed_version, None)
        self.patch_embed = _make_patch_embed(in_chans, dims[0], patch_size, patch_norm, norm_layer, channel_first=self.channel_first)

        _make_downsample = dict(
            v1=PatchMerging2D, 
            v2=self._make_downsample, 
            v3=self._make_downsample_v3, 
            none=(lambda *_, **_k: None),
        ).get(downsample_version, None)

        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            downsample = _make_downsample(
                self.dims[i_layer], 
                self.dims[i_layer + 1], 
                norm_layer=norm_layer,
                channel_first=self.channel_first,
            ) if (i_layer < self.num_layers - 1) else nn.Identity()

            self.layers.append(self._make_layer(
                dim = self.dims[i_layer],
                drop_path = dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                use_checkpoint=use_checkpoint,
                norm_layer=norm_layer,
                downsample=downsample,
                channel_first=self.channel_first,
                # =================
                ssm_d_state=ssm_d_state,
                ssm_ratio=ssm_ratio,
                ssm_dt_rank=ssm_dt_rank,
                ssm_act_layer=ssm_act_layer,
                ssm_conv=ssm_conv,
                ssm_conv_bias=ssm_conv_bias,
                ssm_drop_rate=ssm_drop_rate,
                ssm_init=ssm_init,
                forward_type=forward_type,
                # =================
                mlp_ratio=mlp_ratio,
                mlp_act_layer=mlp_act_layer,
                mlp_drop_rate=mlp_drop_rate,
                gmlp=gmlp,
            ))

        self.classifier = nn.Sequential(OrderedDict(
            norm=norm_layer(self.num_features), # B,H,W,C
            permute=(Permute(0, 3, 1, 2) if not self.channel_first else nn.Identity()),
            avgpool=nn.AdaptiveAvgPool2d(1),
            flatten=nn.Flatten(1),
            head=nn.Linear(self.num_features, num_classes),
        ))

        self.apply(self._init_weights)

    @staticmethod
    def _pos_embed(embed_dims, patch_size, img_size):
        patch_height, patch_width = (img_size // patch_size, img_size // patch_size)
        pos_embed = nn.Parameter(torch.zeros(1, embed_dims, patch_height, patch_width))
        trunc_normal_(pos_embed, std=0.02)
        return pos_embed

    def _init_weights(self, m: nn.Module):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    # used in building optimizer
    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed"}

    # used in building optimizer
    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {}

    @staticmethod
    def _make_patch_embed(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm, channel_first=False):
        # if channel first, then Norm and Output are both channel_first
        return nn.Sequential(
            nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True),
            (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            (norm_layer(embed_dim) if patch_norm else nn.Identity()),
        )

    @staticmethod
    def _make_patch_embed_v2(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm, channel_first=False):
        # if channel first, then Norm and Output are both channel_first
        stride = patch_size // 2
        kernel_size = stride + 1
        padding = 1
        return nn.Sequential(
            nn.Conv2d(in_chans, embed_dim // 2, kernel_size=kernel_size, stride=stride, padding=padding),
            (nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 2, 3, 1)),
            (norm_layer(embed_dim // 2) if patch_norm else nn.Identity()),
            (nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 3, 1, 2)),
            nn.GELU(),
            nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding),
            (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            (norm_layer(embed_dim) if patch_norm else nn.Identity()),
        )

    @staticmethod
    def _make_downsample(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False):
        # if channel first, then Norm and Output are both channel_first
        return nn.Sequential(
            (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
            nn.Conv2d(dim, out_dim, kernel_size=2, stride=2),
            (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            norm_layer(out_dim),
        )

    @staticmethod
    def _make_downsample_v3(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False):
        # if channel first, then Norm and Output are both channel_first
        return nn.Sequential(
            (nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
            nn.Conv2d(dim, out_dim, kernel_size=3, stride=2, padding=1),
            (nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
            norm_layer(out_dim),
        )

    @staticmethod
    def _make_layer(
        dim=96, 
        drop_path=[0.1, 0.1], 
        use_checkpoint=False, 
        norm_layer=nn.LayerNorm,
        downsample=nn.Identity(),
        channel_first=False,
        # ===========================
        ssm_d_state=16,
        ssm_ratio=2.0,
        ssm_dt_rank="auto",       
        ssm_act_layer=nn.SiLU,
        ssm_conv=3,
        ssm_conv_bias=True,
        ssm_drop_rate=0.0, 
        ssm_init="v0",
        forward_type="v2",
        # ===========================
        mlp_ratio=4.0,
        mlp_act_layer=nn.GELU,
        mlp_drop_rate=0.0,
        gmlp=False,
        **kwargs,
    ):
        # if channel first, then Norm and Output are both channel_first
        depth = len(drop_path)
        blocks = []
        for d in range(depth):
            blocks.append(VSSBlock(
                hidden_dim=dim, 
                drop_path=drop_path[d],
                norm_layer=norm_layer,
                channel_first=channel_first,
                ssm_d_state=ssm_d_state,
                ssm_ratio=ssm_ratio,
                ssm_dt_rank=ssm_dt_rank,
                ssm_act_layer=ssm_act_layer,
                ssm_conv=ssm_conv,
                ssm_conv_bias=ssm_conv_bias,
                ssm_drop_rate=ssm_drop_rate,
                ssm_init=ssm_init,
                forward_type=forward_type,
                mlp_ratio=mlp_ratio,
                mlp_act_layer=mlp_act_layer,
                mlp_drop_rate=mlp_drop_rate,
                gmlp=gmlp,
                use_checkpoint=use_checkpoint,
            ))

        return nn.Sequential(OrderedDict(
            blocks=nn.Sequential(*blocks,),
            downsample=downsample,
        ))

    def forward(self, x: torch.Tensor):
        x = self.patch_embed(x)
        if self.pos_embed is not None:
            pos_embed = self.pos_embed.permute(0, 2, 3, 1) if not self.channel_first else self.pos_embed
            x = x + pos_embed
        for layer in self.layers:
            x = layer(x)
        x = self.classifier(x)
        return x

    def flops(self, shape=(3, 224, 224), verbose=True):
        # shape = self.__input_shape__[1:]
        supported_ops={
            "aten::silu": None, # as relu is in _IGNORED_OPS
            "aten::neg": None, # as relu is in _IGNORED_OPS
            "aten::exp": None, # as relu is in _IGNORED_OPS
            "aten::flip": None, # as permute is in _IGNORED_OPS
            # "prim::PythonOp.CrossScan": None,
            # "prim::PythonOp.CrossMerge": None,
            "prim::PythonOp.SelectiveScanMamba": partial(selective_scan_flop_jit, flops_fn=flops_selective_scan_fn, verbose=verbose),
            "prim::PythonOp.SelectiveScanOflex": partial(selective_scan_flop_jit, flops_fn=flops_selective_scan_fn, verbose=verbose),
            "prim::PythonOp.SelectiveScanCore": partial(selective_scan_flop_jit, flops_fn=flops_selective_scan_fn, verbose=verbose),
            "prim::PythonOp.SelectiveScanNRow": partial(selective_scan_flop_jit, flops_fn=flops_selective_scan_fn, verbose=verbose),
        }

        model = copy.deepcopy(self)
        model.cuda().eval()

        input = torch.randn((1, *shape), device=next(model.parameters()).device)
        params = parameter_count(model)[""]
        Gflops, unsupported = flop_count(model=model, inputs=(input,), supported_ops=supported_ops)

        del model, input
        return sum(Gflops.values()) * 1e9
        return f"params {params} GFLOPs {sum(Gflops.values())}"

    # used to load ckpt from previous training code
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):

        def check_name(src, state_dict: dict = state_dict, strict=False):
            if strict:
                if prefix + src in list(state_dict.keys()):
                    return True
            else:
                key = prefix + src
                for k in list(state_dict.keys()):
                    if k.startswith(key):
                        return True
            return False

        def change_name(src, dst, state_dict: dict = state_dict, strict=False):
            if strict:
                if prefix + src in list(state_dict.keys()):
                    state_dict[prefix + dst] = state_dict[prefix + src]
                    state_dict.pop(prefix + src)
            else:
                key = prefix + src
                for k in list(state_dict.keys()):
                    if k.startswith(key):
                        new_k = prefix + dst + k[len(key):]
                        state_dict[new_k] = state_dict[k]
                        state_dict.pop(k)

        if check_name("pos_embed", strict=True):
            srcEmb: torch.Tensor = state_dict[prefix + "pos_embed"]
            state_dict[prefix + "pos_embed"] = F.interpolate(srcEmb.float(), size=self.pos_embed.shape[2:4], align_corners=False, mode="bicubic").to(srcEmb.device)

        change_name("patch_embed.proj", "patch_embed.0")
        change_name("patch_embed.norm", "patch_embed.2")
        for i in range(100):
            for j in range(100):
                change_name(f"layers.{i}.blocks.{j}.ln_1", f"layers.{i}.blocks.{j}.norm")
                change_name(f"layers.{i}.blocks.{j}.self_attention", f"layers.{i}.blocks.{j}.op")
        change_name("norm", "classifier.norm")
        change_name("head", "classifier.head")

        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

# compatible with openmmlab
class Backbone_VSSM(VSSM):

    def __init__(self, num_stages=4, out_indices=(0, 1, 2, 3), pretrained=None, norm_layer="ln", **kwargs):
        kwargs.update(norm_layer=norm_layer)
        super().__init__(**kwargs)
        self.channel_first = (norm_layer.lower() in ["bn", "ln2d"])
        _NORMLAYERS = dict(
            ln=nn.LayerNorm,
            ln2d=LayerNorm2d,
            bn=nn.BatchNorm2d,
        )
        norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None)        

        self.out_indices = out_indices
        for i in out_indices:
            layer = norm_layer(self.dims[i])
            layer_name = f'outnorm{i}'
            self.add_module(layer_name, layer)

        # ADD BY TYL start
        # assert max(out_indices) < num_stages
        # for i in range(max(out_indices)+1, num_stages):
        #     del self.layers[i]
        # ADD BY TYL end

        del self.classifier
        self.load_pretrained(pretrained)

    def load_pretrained(self, ckpt=None, key="model"):
        if ckpt is None:
            return
        # pdb.set_trace()
        _ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
        print(f"Successfully load ckpt {ckpt}")
        incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
        print(incompatibleKeys)

        try:
            _ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
            print(f"Successfully load ckpt {ckpt}")
            incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
            print(incompatibleKeys)
        except Exception as e:
            print(f"Failed loading checkpoint form {ckpt}: {e}")
        # pdb.set_trace()

    def forward(self, x):
        def layer_forward(l, x):
            x = l.blocks(x)
            y = l.downsample(x)
            return x, y

        x = self.patch_embed(x)
        outs = []
        for i, layer in enumerate(self.layers):
            o, x = layer_forward(layer, x) # (B, H, W, C)
            if i in self.out_indices:
                norm_layer = getattr(self, f'outnorm{i}')
                out = norm_layer(o)
                if not self.channel_first:
                    out = out.permute(0, 3, 1, 2)
                outs.append(out.contiguous())

        if len(self.out_indices) == 0:
            return x

        return outs
MzeroMiko commented 1 week ago

can you successfully run the maskrcnn version? (detection/configs/vssm1/mask_rcnn_vssm_fpn_coco_tiny.py)