Closed Spiruel closed 1 year ago
There is none on the benchmark dataset. However, the model has been tested with Unet architecture for comparison. Below is the result: | Class | Accuracy | IoU | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Natural Vegetation | 0.63667133 | 0.457776506 | 0.619654332 | 0.63667133 | 0.628047583 | |
Forest | 0.717167742 | 0.477231243 | 0.587873474 | 0.717167742 | 0.646115827 | |
Corn | 0.633266833 | 0.522647144 | 0.749499561 | 0.633266833 | 0.686498045 | |
Soybeans | 0.66765162 | 0.51677767 | 0.695758167 | 0.66765162 | 0.681415187 | |
Wetlands | 0.603593075 | 0.4109703 | 0.562898078 | 0.603593075 | 0.58253572 | |
Developed/Barren | 0.602285469 | 0.463743295 | 0.668438842 | 0.602285469 | 0.633640197 | |
Open Water | 0.8775865 | 0.75960682 | 0.849630864 | 0.8775865 | 0.863382446 | |
Winter Wheat | 0.663901059 | 0.495049223 | 0.660609926 | 0.663901059 | 0.662251404 | |
Alfalfa | 0.590268065 | 0.384786488 | 0.525017524 | 0.590268065 | 0.555734031 | |
Fallow/Idle Cropland | 0.529354378 | 0.359912203 | 0.529279272 | 0.529354378 | 0.529316822 | |
Cotton | 0.452972025 | 0.32580719 | 0.537155554 | 0.452972025 | 0.491485025 | |
Sorghum | 0.615285898 | 0.39095417 | 0.517441972 | 0.615285898 | 0.562138104 | |
Other | 0.458951429 | 0.326831026 | 0.531687166 | 0.458951429 | 0.492649056 |
contribution: @hanxLi @samKhallaghi
For ref the scores are also on https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification - however the above table is more complete, can you point to the source?
Hi,
Are there any benchmark results for the finetuning efforts? I would like to know eg. accuracy for crop type classification on the HSL data.
Cheers