Open smohiudd opened 10 months ago
Are we using the correct extension versions in build stac?
Proj extension and raster ext versions: https://github.com/NASA-IMPACT/veda-data-airflow/blob/a47015ba2b327eb5d1f54958246cb6fb5b79ccb1/docker_tasks/build_stac/utils/stac.py#L12
cc: @anayeaye, @slesaad
Check if rio stac version is correct: https://github.com/NASA-IMPACT/veda-data-airflow/blob/a47015ba2b327eb5d1f54958246cb6fb5b79ccb1/docker_tasks/build_stac/requirements.txt#L7
Currently using 0.7.0 in airflow build stac
I confirmed that we want to use rio-stac>=0.8.0 to get the correct version of the proj extension.
I think we will also have a minor refactor to import the actual versions of the extensions used by rio-stac in airflows build_stac/utils/stac.py as shown in the rio-stac documentation for building multi-asset items. Currently the utils method manually declares the projection version--given that, there may be other slight modifications to how the stac item is created.
Rio-stac version and corresponding stac extension versions now updated in this pr https://github.com/NASA-IMPACT/veda-data-airflow/pull/125
We're currently blocked on this being implemented https://jaas.gsfc.nasa.gov/servicedesk/customer/portal/2/GSD-3143 (creation of a NAT gateway).
Proof that there's a networking issue:
We also tested the worfklow setting STAC_INGESTOR_API_URL
to both https://77451h4b35.execute-api.us-west-2.amazonaws.com/
and https://dev.openveda.cloud/api/ingest/
and proved that the veda_ingest_raster
DAG runs successfully with either values
TODO
cc @smohiudd @anayeaye @amarouane-ABDELHAK @ranchodeluxe
An additional service desk ticket was created on May 3rd, 2024 to update the network ACL rules to allow traffic for ephemeral port range and the ticket is currently in Security Review
status.
Ephemeral port range testing
-/ingestions
with https://staging-stac.delta-backend.com/collections/hls-swir-falsecolor-composite/items/Lahaina_HLS_2023-08-13_SWIR_falsecolor_cog succeeded
/ingestions/{ingestion_id}
with above ID succeeded/dataset/publish
with hls-swir-falsecolor-composite.json which was successful/dataset/publish
with landsat-nighttime-thermal.json which was successful/discover-executions/{workflow_execution_id}
with98a698c7-38a3-4be3-b9df-52b743270690
succeededeb95f396-e5ef-4ac2-93f1-88b92b588521
succeededNow that we are unblocked, here are the notes from a backfill planning session with @botanical @smohiudd @ividito
We plan to use https://staging-stac.delta-backend.com/collections as our source of truth for the collections to publish to the VEDA instances running in MCP (we’ll do some test runs in mcp-test before moving to production).
Our target is to promote all the data that are currently staged the UAH hosted staging instance of VEDA to the MCP hosted test and production stacks. At a hight level:
We will need to start thinking about a new release for upcoming changes to the ingestion DAGs. We discussed whether we should manage this in a new branch? Should we move the discovery items into the veda-data-airflow project? For now we have decided to proceed with a slight change to the git:veda-data folder structure to accommodate different folders for each stage. As in: we currently have discovery-items configuration for staging data which will move to /staging and a new production/ folder will be created for inputs configured from production data.
ingestion_data/
Collections (automated validation on pr)
/staging
/discovery-items
/dataset-config
/production
/discovery-items
/dataset-config (probably not? Probably we just automate the collection+discovery items)
Copy veda-data/staging/discovery-items to veda-data/production/discovery-items and
Backfill track
observability & monitoring in MCP track
I started a new sheet to this working backfill google spreadsheet and loaded an inventory staging-collections.csv from the staging stac catalog that I generated in a notebook with this hacky loop:
from pystac_client import Client
import pandas as pd
def get_sample_files(collection):
"""return the hrefs of a cog assets if any items exist with cog assets"""
cog_assets=[]
try:
item = next(collection.get_items(), None)
if item:
for k in item.assets.keys():
if k != "rendered_preview":
asset = item.assets[k]
cog_assets.append({"key": k, "href": asset.get_absolute_href()})
return cog_assets
except:
return cog_assets
STAC_API_URL = "https://staging-stac.delta-backend.com/"
catalog = Client.open(STAC_API_URL)
summaries = []
collections = list(catalog.get_collections())
for collection in sorted(collections, key=lambda x: x.id):
summaries.append({
"id": collection.id,
"title": collection.title,
"sample_files": get_sample_files(collection)
})
df = pd.DataFrame(summaries)
df.to_csv("staging-collections.csv")
df
https://github.com/NASA-IMPACT/veda-data/pull/121 PR to add new directory structure and update prefixes for production
Potential collections to exclude are:
The following discoveries failed in mcp-test:
/ingestions
endpoint since /discovery
kept saying we had AccessDenied
errors. modis-lst-night-diff-2015-2022
was due to incorrect bucket name. Fixed here:
https://github.com/NASA-IMPACT/veda-data/pull/125For posterity, the nceo_africa_2017
ingestion item:
{
"id": "AGB_map_2017v0m_COG",
"bbox": [
-18.273529509559307,
-35.054059016911935,
51.86423292864056,
37.73103856358817
],
"type": "Feature",
"links": [],
"assets": {
"cog_default": {
"href": "s3://nasa-maap-data-store/file-staging/nasa-map/nceo-africa-2017/AGB_map_2017v0m_COG.tif",
"type": "image/tiff; application=geotiff; profile=cloud-optimized",
"roles": [
"data",
"layer"
],
"title": "Default COG Layer",
"description": "Cloud optimized default layer to display on map",
"raster:bands": [
{
"scale": 1,
"nodata": "inf",
"offset": 0,
"sampling": "area",
"data_type": "uint16",
"histogram": {
"max": 429,
"min": 0,
"count": 11,
"buckets": [
405348,
44948,
18365,
6377,
3675,
3388,
3785,
9453,
13108,
1186
]
},
"statistics": {
"mean": 37.58407913145342,
"stddev": 81.36678677343947,
"maximum": 429,
"minimum": 0,
"valid_percent": 50.42436439336373
}
}
]
}
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
-18.273529509559307,
-35.054059016911935
],
[
51.86423292864056,
-35.054059016911935
],
[
51.86423292864056,
37.73103856358817
],
[
-18.273529509559307,
37.73103856358817
],
[
-18.273529509559307,
-35.054059016911935
]
]
]
},
"collection": "nceo_africa_2017",
"properties": {
"proj:bbox": [
-18.273529509559307,
-35.054059016911935,
51.86423292864056,
37.73103856358817
],
"proj:epsg": 4326,
"proj:shape": [
81024,
78077
],
"end_datetime": "2017-12-31T23:59:59+00:00",
"proj:geometry": {
"type": "Polygon",
"coordinates": [
[
[
-18.273529509559307,
-35.054059016911935
],
[
51.86423292864056,
-35.054059016911935
],
[
51.86423292864056,
37.73103856358817
],
[
-18.273529509559307,
37.73103856358817
],
[
-18.273529509559307,
-35.054059016911935
]
]
]
},
"proj:transform": [
0.0008983152841195214,
0,
-18.273529509559307,
0,
-0.0008983152841195214,
37.73103856358817,
0,
0,
1
],
"start_datetime": "2017-01-01T00:00:00+00:00",
"datetime": null
},
"stac_version": "1.0.0",
"stac_extensions": [
"https://stac-extensions.github.io/projection/v1.0.0/schema.json",
"https://stac-extensions.github.io/raster/v1.1.0/schema.json"
]
}
Here's a small first draft of an audit of the collections in veda-config datasets and the mcp-test
stack. The unmatched collection ids are known special cases. Some of the empty collections are also expected but others may mean we need to tweak the discovery items configuration.
Note I will update this comment with the results to account for the known special cases like externally hosted assets
import requests
STAC_API_URL = "https://test.openveda.cloud/api/stac"
SRC_STAC_API_URL = "https://staging-stac.delta-backend.com"
VEDA_DATA_URL = "https://github.com/NASA-IMPACT/veda-data/tree/main/ingestion-data"
missing_collections = []
empty_collections = []
complete_collections = []
dashboard_collections = ['CMIP245-winter-median-pr', 'CMIP245-winter-median-ta', 'CMIP585-winter-median-pr', 'CMIP585-winter-median-ta', 'EPA-annual-emissions_1A_Combustion_Mobile', 'EPA-annual-emissions_1A_Combustion_Stationary', 'EPA-annual-emissions_1B1a_Abandoned_Coal', 'EPA-annual-emissions_1B1a_Coal_Mining_Surface', 'EPA-annual-emissions_1B1a_Coal_Mining_Underground', 'EPA-annual-emissions_1B2a_Petroleum', 'EPA-annual-emissions_1B2b_Natural_Gas_Distribution', 'EPA-annual-emissions_1B2b_Natural_Gas_Processing', 'EPA-annual-emissions_1B2b_Natural_Gas_Production', 'EPA-annual-emissions_1B2b_Natural_Gas_Transmission', 'EPA-annual-emissions_2B5_Petrochemical_Production', 'EPA-annual-emissions_2C2_Ferroalloy_Production', 'EPA-annual-emissions_4A_Enteric_Fermentation', 'EPA-annual-emissions_4B_Manure_Management', 'EPA-annual-emissions_4C_Rice_Cultivation', 'EPA-annual-emissions_4F_Field_Burning', 'EPA-annual-emissions_5_Forest_Fires', 'EPA-annual-emissions_6A_Landfills_Industrial', 'EPA-annual-emissions_6A_Landfills_Municipal', 'EPA-annual-emissions_6B_Wastewater_Treatment_Domestic', 'EPA-annual-emissions_6B_Wastewater_Treatment_Industrial', 'EPA-annual-emissions_6D_Composting', 'EPA-daily-emissions_5_Forest_Fires', 'EPA-monthly-emissions_1A_Combustion_Stationary', 'EPA-monthly-emissions_1B2a_Petroleum', 'EPA-monthly-emissions_1B2b_Natural_Gas_Production', 'EPA-monthly-emissions_4B_Manure_Management', 'EPA-monthly-emissions_4C_Rice_Cultivation', 'EPA-monthly-emissions_4F_Field_Burning', 'IS2SITMOGR4-cog', 'MO_NPP_npp_vgpm', 'OMI_trno2-COG', 'OMSO2PCA-COG', 'bangladesh-landcover-2001-2020', 'barc-thomasfire', 'blue-tarp-detection', 'blue-tarp-planetscope', 'caldor-fire-behavior', 'caldor-fire-burn-severity', 'campfire-albedo-wsa-diff', 'campfire-lst-day-diff', 'campfire-lst-night-diff', 'campfire-ndvi-diff', 'campfire-nlcd', 'co2-diff', 'co2-mean', 'combined_CMIP6_daily_GISS-E2-1-G_tas_kerchunk_DEMO', 'conus-reach', 'disalexi-etsuppression', 'ecco-surface-height-change', 'eis_fire_perimeter', 'facebook_population_density', 'fldas-soil-moisture-anomalies', 'frp-max-thomasfire', 'geoglam', 'grdi-cdr-raster', 'grdi-filled-missing-values-count', 'grdi-imr-raster', 'grdi-shdi-raster', 'grdi-v1-built', 'grdi-v1-raster', 'grdi-vnl-raster', 'grdi-vnl-slope-raster', 'hls-bais2-v2', 'hls-l30-002-ej-reprocessed', 'hls-s30-002-ej-reprocessed', 'hls-swir-falsecolor-composite', 'houston-aod', 'houston-aod-diff', 'houston-landcover', 'houston-lst-day', 'houston-lst-diff', 'houston-lst-night', 'houston-ndvi', 'houston-urbanization', 'landsat-nighttime-thermal', 'lis-etsuppression', 'lis-global-da-evap', 'lis-global-da-gpp', 'lis-global-da-gpp-trend', 'lis-global-da-gws', 'lis-global-da-qs', 'lis-global-da-qsb', 'lis-global-da-streamflow', 'lis-global-da-swe', 'lis-global-da-totalprecip', 'lis-global-da-tws', 'lis-global-da-tws-trend', 'lis-tvegsuppression', 'lis-tws-anomaly', 'lis-tws-nonstationarity-index', 'lis-tws-trend', 'mtbs-burn-severity', 'nceo_africa_2017', 'nightlights-hd-1band', 'nightlights-hd-monthly', 'no2-monthly', 'no2-monthly-diff', 'snow-projections-diff-245', 'snow-projections-diff-585', 'snow-projections-median-245', 'snow-projections-median-585', 'social-vulnerability-index-household', 'social-vulnerability-index-household-nopop', 'social-vulnerability-index-housing', 'social-vulnerability-index-housing-nopop', 'social-vulnerability-index-minority', 'social-vulnerability-index-minority-nopop', 'social-vulnerability-index-overall', 'social-vulnerability-index-overall-nopop', 'social-vulnerability-index-socioeconomic', 'social-vulnerability-index-socioeconomic-nopop', 'sport-lis-vsm0_100cm-percentile']
for collection_id in sorted(set(dashboard_collections)):
collections_url = f"{STAC_API_URL}/collections/{collection_id}"
r = requests.get(collections_url)
if r.reason == "Not Found":
missing_collections.append(collection_id)
else:
items_url = f"{STAC_API_URL}/collections/{collection_id}/items"
r = requests.get(items_url)
items_matched = r.json().get("context").get("matched")
src_items_url = f"{SRC_STAC_API_URL}/collections/{collection_id}/items"
src_r = requests.get(src_items_url)
src_items_matched = src_r.json().get("context").get("matched")
src_match = items_matched == src_items_matched
if not src_match:
print(f"\n{collection_id=} {items_matched=} {src_items_matched=} {src_match=}!")
print(f"{items_url=}")
print(f"{src_items_url=}")
veda_data_discovery = f"{VEDA_DATA_URL}/production/discovery-items/{collection_id}.json"
discovery=requests.get(veda_data_discovery)
if not discovery.reason=="OK":
print(f"DISCOVERY CONFIG FOR {collection_id=} {discovery.reason=}!")
else:
complete_collections.append(collection_id)
if not items_matched:
empty_collections.append(collection_id)
print(f"\n{len(dashboard_collections)=}")
print(f"\n{len(complete_collections)=}\n{complete_collections=}")
print(f"\n{len(missing_collections)=}\n{missing_collections=}")
print(f"\n{len(empty_collections)=}\n{empty_collections=}")
collection_id='CMIP585-winter-median-pr' items_matched=0 src_items_matched=4 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/CMIP585-winter-median-pr/items' src_items_url='https://staging-stac.delta-backend.com/collections/CMIP585-winter-median-pr/items'
collection_id='MO_NPP_npp_vgpm' items_matched=0 src_items_matched=12 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/MO_NPP_npp_vgpm/items' src_items_url='https://staging-stac.delta-backend.com/collections/MO_NPP_npp_vgpm/items'
collection_id='bangladesh-landcover-2001-2020' items_matched=0 src_items_matched=2 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/bangladesh-landcover-2001-2020/items' src_items_url='https://staging-stac.delta-backend.com/collections/bangladesh-landcover-2001-2020/items'
collection_id='campfire-lst-day-diff' items_matched=0 src_items_matched=1 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/campfire-lst-day-diff/items' src_items_url='https://staging-stac.delta-backend.com/collections/campfire-lst-day-diff/items'
collection_id='campfire-nlcd' items_matched=1 src_items_matched=2 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/campfire-nlcd/items' src_items_url='https://staging-stac.delta-backend.com/collections/campfire-nlcd/items'
collection_id='fldas-soil-moisture-anomalies' items_matched=0 src_items_matched=499 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/fldas-soil-moisture-anomalies/items' src_items_url='https://staging-stac.delta-backend.com/collections/fldas-soil-moisture-anomalies/items'
collection_id='geoglam' items_matched=46 src_items_matched=47 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/geoglam/items' src_items_url='https://staging-stac.delta-backend.com/collections/geoglam/items'
collection_id='hls-swir-falsecolor-composite' items_matched=0 src_items_matched=2 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/hls-swir-falsecolor-composite/items' src_items_url='https://staging-stac.delta-backend.com/collections/hls-swir-falsecolor-composite/items'
collection_id='houston-lst-diff' items_matched=0 src_items_matched=1 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/houston-lst-diff/items' src_items_url='https://staging-stac.delta-backend.com/collections/houston-lst-diff/items'
collection_id='houston-urbanization' items_matched=0 src_items_matched=1 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/houston-urbanization/items' src_items_url='https://staging-stac.delta-backend.com/collections/houston-urbanization/items'
collection_id='lis-global-da-evap' items_matched=7062 src_items_matched=6849 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-evap/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-evap/items'
collection_id='lis-global-da-gpp' items_matched=7062 src_items_matched=6841 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-gpp/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-gpp/items'
collection_id='lis-global-da-gpp-trend' items_matched=0 src_items_matched=3 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-gpp-trend/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-gpp-trend/items'
collection_id='lis-global-da-gws' items_matched=2779 src_items_matched=6844 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-gws/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-gws/items'
collection_id='lis-global-da-streamflow' items_matched=0 src_items_matched=5998 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-streamflow/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-streamflow/items'
collection_id='lis-global-da-totalprecip' items_matched=6605 src_items_matched=7364 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-totalprecip/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-totalprecip/items'
collection_id='lis-global-da-tws' items_matched=7062 src_items_matched=6768 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-tws/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-tws/items'
collection_id='lis-global-da-tws-trend' items_matched=2 src_items_matched=3 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-global-da-tws-trend/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-global-da-tws-trend/items'
collection_id='lis-tws-anomaly' items_matched=6698 src_items_matched=7031 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-tws-anomaly/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-tws-anomaly/items'
collection_id='lis-tws-trend' items_matched=0 src_items_matched=1 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/lis-tws-trend/items' src_items_url='https://staging-stac.delta-backend.com/collections/lis-tws-trend/items'
collection_id='mtbs-burn-severity' items_matched=1 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/mtbs-burn-severity/items' src_items_url='https://staging-stac.delta-backend.com/collections/mtbs-burn-severity/items'
collection_id='nceo_africa_2017' items_matched=0 src_items_matched=1 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/nceo_africa_2017/items' src_items_url='https://staging-stac.delta-backend.com/collections/nceo_africa_2017/items'
collection_id='nightlights-hd-1band' items_matched=7 src_items_matched=6 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/nightlights-hd-1band/items' src_items_url='https://staging-stac.delta-backend.com/collections/nightlights-hd-1band/items'
collection_id='nightlights-hd-monthly' items_matched=0 src_items_matched=1134 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/nightlights-hd-monthly/items' src_items_url='https://staging-stac.delta-backend.com/collections/nightlights-hd-monthly/items'
collection_id='no2-monthly' items_matched=0 src_items_matched=93 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/no2-monthly/items' src_items_url='https://staging-stac.delta-backend.com/collections/no2-monthly/items'
collection_id='no2-monthly-diff' items_matched=1 src_items_matched=105 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/no2-monthly-diff/items' src_items_url='https://staging-stac.delta-backend.com/collections/no2-monthly-diff/items'
collection_id='snow-projections-diff-585' items_matched=0 src_items_matched=40 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/snow-projections-diff-585/items' src_items_url='https://staging-stac.delta-backend.com/collections/snow-projections-diff-585/items'
collection_id='snow-projections-median-245' items_matched=0 src_items_matched=40 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/snow-projections-median-245/items' src_items_url='https://staging-stac.delta-backend.com/collections/snow-projections-median-245/items'
collection_id='snow-projections-median-585' items_matched=0 src_items_matched=40 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/snow-projections-median-585/items' src_items_url='https://staging-stac.delta-backend.com/collections/snow-projections-median-585/items'
collection_id='social-vulnerability-index-household' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-household/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-household/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-household' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-household-nopop' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-household-nopop/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-household-nopop/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-household-nopop' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-housing' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-housing/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-housing/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-housing' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-housing-nopop' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-housing-nopop/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-housing-nopop/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-housing-nopop' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-minority' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-minority/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-minority/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-minority' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-minority-nopop' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-minority-nopop/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-minority-nopop/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-minority-nopop' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-overall' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-overall/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-overall/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-overall' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-overall-nopop' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-overall-nopop/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-overall-nopop/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-overall-nopop' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-socioeconomic' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-socioeconomic/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-socioeconomic/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-socioeconomic' discovery.reason='Not Found'!
collection_id='social-vulnerability-index-socioeconomic-nopop' items_matched=0 src_items_matched=5 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/social-vulnerability-index-socioeconomic-nopop/items' src_items_url='https://staging-stac.delta-backend.com/collections/social-vulnerability-index-socioeconomic-nopop/items' DISCOVERY CONFIG FOR collection_id='social-vulnerability-index-socioeconomic-nopop' discovery.reason='Not Found'!
collection_id='sport-lis-vsm0_100cm-percentile' items_matched=0 src_items_matched=2 src_match=False! items_url='https://test.openveda.cloud/api/stac/collections/sport-lis-vsm0_100cm-percentile/items' src_items_url='https://staging-stac.delta-backend.com/collections/sport-lis-vsm0_100cm-percentile/items'
len(dashboard_collections)=117
len(complete_collections)=74
complete_collections=['CMIP245-winter-median-pr', 'CMIP245-winter-median-ta', 'CMIP585-winter-median-ta', 'EPA-annual-emissions_1A_Combustion_Mobile', 'EPA-annual-emissions_1A_Combustion_Stationary', 'EPA-annual-emissions_1B1a_Abandoned_Coal', 'EPA-annual-emissions_1B1a_Coal_Mining_Surface', 'EPA-annual-emissions_1B1a_Coal_Mining_Underground', 'EPA-annual-emissions_1B2a_Petroleum', 'EPA-annual-emissions_1B2b_Natural_Gas_Distribution', 'EPA-annual-emissions_1B2b_Natural_Gas_Processing', 'EPA-annual-emissions_1B2b_Natural_Gas_Production', 'EPA-annual-emissions_1B2b_Natural_Gas_Transmission', 'EPA-annual-emissions_2B5_Petrochemical_Production', 'EPA-annual-emissions_2C2_Ferroalloy_Production', 'EPA-annual-emissions_4A_Enteric_Fermentation', 'EPA-annual-emissions_4B_Manure_Management', 'EPA-annual-emissions_4C_Rice_Cultivation', 'EPA-annual-emissions_4F_Field_Burning', 'EPA-annual-emissions_5_Forest_Fires', 'EPA-annual-emissions_6A_Landfills_Industrial', 'EPA-annual-emissions_6A_Landfills_Municipal', 'EPA-annual-emissions_6B_Wastewater_Treatment_Domestic', 'EPA-annual-emissions_6B_Wastewater_Treatment_Industrial', 'EPA-annual-emissions_6D_Composting', 'EPA-daily-emissions_5_Forest_Fires', 'EPA-monthly-emissions_1A_Combustion_Stationary', 'EPA-monthly-emissions_1B2a_Petroleum', 'EPA-monthly-emissions_1B2b_Natural_Gas_Production', 'EPA-monthly-emissions_4B_Manure_Management', 'EPA-monthly-emissions_4C_Rice_Cultivation', 'EPA-monthly-emissions_4F_Field_Burning', 'IS2SITMOGR4-cog', 'OMI_trno2-COG', 'OMSO2PCA-COG', 'barc-thomasfire', 'blue-tarp-detection', 'blue-tarp-planetscope', 'caldor-fire-behavior', 'caldor-fire-burn-severity', 'campfire-albedo-wsa-diff', 'campfire-lst-night-diff', 'campfire-ndvi-diff', 'co2-diff', 'co2-mean', 'conus-reach', 'disalexi-etsuppression', 'ecco-surface-height-change', 'eis_fire_perimeter', 'facebook_population_density', 'frp-max-thomasfire', 'grdi-cdr-raster', 'grdi-filled-missing-values-count', 'grdi-imr-raster', 'grdi-shdi-raster', 'grdi-v1-built', 'grdi-v1-raster', 'grdi-vnl-raster', 'grdi-vnl-slope-raster', 'hls-bais2-v2', 'houston-aod', 'houston-aod-diff', 'houston-landcover', 'houston-lst-day', 'houston-lst-night', 'houston-ndvi', 'landsat-nighttime-thermal', 'lis-etsuppression', 'lis-global-da-qs', 'lis-global-da-qsb', 'lis-global-da-swe', 'lis-tvegsuppression', 'lis-tws-nonstationarity-index', 'snow-projections-diff-245']
len(missing_collections)=3
missing_collections=['combined_CMIP6_daily_GISS-E2-1-G_tas_kerchunk_DEMO', 'hls-l30-002-ej-reprocessed', 'hls-s30-002-ej-reprocessed']
len(empty_collections)=29
empty_collections=['CMIP585-winter-median-pr', 'MO_NPP_npp_vgpm', 'bangladesh-landcover-2001-2020', 'campfire-lst-day-diff', 'eis_fire_perimeter', 'fldas-soil-moisture-anomalies', 'hls-swir-falsecolor-composite', 'houston-lst-diff', 'houston-urbanization', 'lis-global-da-gpp-trend', 'lis-global-da-streamflow', 'lis-tws-trend', 'nceo_africa_2017', 'nightlights-hd-monthly', 'no2-monthly', 'snow-projections-diff-585', 'snow-projections-median-245', 'snow-projections-median-585', 'social-vulnerability-index-household', 'social-vulnerability-index-household-nopop', 'social-vulnerability-index-housing', 'social-vulnerability-index-housing-nopop', 'social-vulnerability-index-minority', 'social-vulnerability-index-minority-nopop', 'social-vulnerability-index-overall', 'social-vulnerability-index-overall-nopop', 'social-vulnerability-index-socioeconomic', 'social-vulnerability-index-socioeconomic-nopop', 'sport-lis-vsm0_100cm-percentile']
https://github.com/NASA-IMPACT/veda-data/pull/132 PR to restructure ingestions
based on our conversation on slack
Would it be easy enough to rename this collection here before / as we publish the production catalog?
What
All collections currently in
staging
should be published to theproduction
instance.provider
andrender
meta data that is included in theveda-data
repo.veda-data-store-production
bucketsummaries
should be included in all collectionsPI Objective
Objective 4: Publish production data24.3 Objective 2: Publish STAC metadata into Production VEDAAcceptance Criteria
production
including provider and renders meta data and referencing theveda-data-store-production
bucket