NCAR / amwg_dev

Repo to store model sandboxes and cases used for CAM development
9 stars 2 forks source link

b.e23_alpha16b.BLT1850.ne30_t232.033 #356

Open cecilehannay opened 1 year ago

cecilehannay commented 1 year ago

Description: Coupled simulated with cesm2_3_alpha16b with setting requested in #349


Detailed description:

The setting is as follow:

ATM

Bugfix and tuning (we are matching setting from #353):

clubb_gamma_coef = 0.33
clubb_gamma_coefb = 0.33

micro_mg_dcs=500.D-6
micro_mg_vtrmi_factor = 1.0
microp_aero_wsubi_scale  = 1.0

srf_emis_specifier= 'bc_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_bc_a4_anthro_surface_175001-201412_ne30pg3_c20191118.nc',
         'bc_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_bc_a4_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'DMS -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_DMS_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'num_a1 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_so4_a1_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'num_a1 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_so4_a1_anthro-ag-ship_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'num_a2 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_so4_a2_anthro-res_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'num_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_bc_a4_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'num_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_bc_a4_anthro_surface_175001-201412_ne30pg3_c20191118.nc',
         'num_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_pom_a4_anthro_surface_175001-201412_ne30pg3_c20191118.nc',
         'num_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_num_pom_a4_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'pom_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_pom_a4_anthro_surface_175001-201412_ne30pg3_c20191118.nc',
         'pom_a4 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_pom_a4_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'SO2 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_SO2_anthro-ag-ship-res_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'SO2 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_SO2_anthro-ene_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'SO2 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_SO2_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'so4_a1 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_so4_a1_anthro-ag-ship_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'so4_a1 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_so4_a1_bb_surface_175001-201512_ne30pg3_c20191118.nc',
         'so4_a2 -> /glade/p/cesmdata/inputdata/atm/cam/chem/emis/historical_ne30pg3/emissions-cmip6_so4_a2_anthro-res_surface_mol_175001-201412_ne30pg3_c20200103.nc',
         'SOAE -> 2.5592*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_BENZENE_anthro_surface_1750-2015_0.9x1.25_c20170608.nc',
         'SOAE -> 2.5592*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_BENZENE_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 0.5954*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_ISOP_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 5.1004*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_MTERP_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 8.2367*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_TOLUENE_anthro_surface_1750-2015_0.9x1.25_c20170608.nc',
         'SOAE -> 8.2367*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_TOLUENE_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 6.5013*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_XYLENES_anthro_surface_1750-2015_0.9x1.25_c20170608.nc',
         'SOAE -> 6.5013*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_XYLENES_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 8.5371*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_IVOC_anthro_surface_1750-2015_0.9x1.25_c20170608.nc',
         'SOAE -> 8.5371*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_IVOC_bb_surface_1750-2015_0.9x1.25_c20170322.nc',
         'SOAE -> 16.6500*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_SVOC_anthro_surface_1750-2015_0.9x1.25_c20170608.nc',
         'SOAE -> 16.6500*/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/emis/CMIP6_emissions_1750_2015/emissions-cmip6_SVOC_bb_surface_1750-2015_0.9x1.25_c20170322.nc'

  megan_specifier = 'SOAE = 0.5954*isoprene + 5.1004*(carene_3 + pinene_a + thujene_a + bornene +',
      ' terpineol_4 + terpineol_a + terpinyl_ACT_a + myrtenal + sabinene + pinene_b + camphene +',
      ' fenchene_a + limonene + phellandrene_a + terpinene_a + terpinene_g + terpinolene +',
      ' phellandrene_b + linalool + ionone_b + geranyl_acetone + neryl_acetone + jasmone +',
      ' verbenene + ipsenol + myrcene + ocimene_t_b + ocimene_al + ocimene_c_b + 2met_nonatriene) + ',
      ' 12.3942*(farnescene_a + caryophyllene_b + acoradiene + aromadendrene + bergamotene_a +',
      ' bergamotene_b + bisabolene_a + bisabolene_b + bourbonene_b + cadinene_d + cadinene_g +',
      ' cedrene_a + copaene_a + cubebene_a + cubebene_b + elemene_b + farnescene_b +',
      ' germacrene_B + germacrene_D + gurjunene_b + humulene_a + humulene_g + isolongifolene +',
      ' longifolene + longipinene + muurolene_a + muurolene_g + selinene_b + selinene_d +',
      ' nerolidol_c + nerolidol_t)'

SourceMods for HB mods

/glade/p/cesmdata/cseg/runs/cesm2_0/b.e23_alpha16b.BLT1850.ne30_t232.033/SourceMods/src.cam
clubb_intr.F90  
hb_diff.F90  
vertical_diffusion.F90

LND

user_nl_clm

use_init_interp = .true.
fsurdat = '/glade/work/slevis/git/mksurfdata_toolchain/tools/mksurfdata_esmf/surfdata_ne30np4.pg3_SSP5-8.5_78pfts_CMIP6_1850-2100_c230227.nc'
finidat='/glade/p/cgd/tss/people/oleson/CLM5_restarts/ctsm51_cesm23a14a_ne30pg3ne30pg3mg17_CPLHIST_1850pAD.clm2.r.0561-01-01-00000.nc'

SourceMods from

/glade/p/cesmdata/cseg/runs/cesm2_0/b.e23_alpha16b.BLT1850.ne30_t232.033/SourceMods/src.clm
clm_varpar.F90   
surfrdMod.F90

OCN

diag_table in:

/glade/p/cesmdata/cseg/runs/cesm2_0/b.e23_alpha16b.BLT1850.ne30_t232.033/SourceMods/src.mom/diag_table

add to input.nml

    max_num_axis_sets = 50
    max_output_fields = 699
    max_axes = 500 

add to user_nl_mom

MEKE_GEOMETRIC_ALPHA = 0.10

ICE

f_fresh = 'mxxxx'
f_fresh_ai = 'mxxxx'
ice_ic = '/glade/p/cesmdata/cseg/inputdata/cesm2_init/gmom.e23.GJRAv4.TL319_t061_zstar_N65.tx2_3v2.001/0061-01-01/gmom.e23.GJRAv4.TL319_t061_zstar_N65.tx2_3v2.001.cice.r.0061-01-01-0000
0.nc'

Case directory: Locally (if still available): /glade/p/cesmdata/cseg/runs/cesm2_0/b.e23_alpha16b.BLT1850.ne30_t232.033

On github: https://github.com/NCAR/amwg_dev/tree/b.e23_alpha16b.BLT1850.ne30_t232.033


Sandbox: Locally (if still available): /glade/work/hannay/cesm_tags/cesm2_3_alpha16b

On github:

git clone https://github.com/ESCOMP/cesm cesm2_3_alpha16b
cd cesm2_3_alpha16b
git checkout  cesm2_3_alpha16b
./manage_externals/checkout_externals -o

Diagnostics: AMWG diags (if available) https://webext.cgd.ucar.edu/BLT1850/b.e23_alpha16b.BLT1850.ne30_t232.033/


Contacts: @PeterHjortLauritzen, @adamrher, @JulioTBacmeister, @cecilehannay @olyson, @wwieder and @slevis-lmwg @gustavo-marques and @klindsay28 @jedwards4b @dabail10

cecilehannay commented 1 year ago

The simulation ran 15 years. Justin plotted the ATM timeseries and ADF diags. b e23_alpha16b BLT1850 ne30_t232 033_TimeSeries_ANN

The RESTOM is about -0.4 W/m2 which a bit surprising as it is 4.3 W/m2 lower than the equivalent F case. (usually there is only 2 W/m2 between the F case and the B case). The lab sea seems to be building up.

There might be something buggy in the setting and I am looking into this. I am stopping the simulation for now.

justin-richling commented 1 year ago

ADF diags vs Obs and vs f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae.001

klindsay28 commented 1 year ago

ADF reports that mean RESTOM is about -0.4 W/m2, while the time series plot is around -1.0 W/m2, and always < -0.5 W/m2. How can the mean be so different from the values in the time series plot?

cecilehannay commented 1 year ago

I agree that the plots are not consistent. @justin-richling: could you check the time series plot. Please make sure not to include any running average in RESTOM. We would like to see what is happening at the very beginning of the run.

justin-richling commented 1 year ago

Thanks for highlighting this discrepancy @klindsay28, after some exploration this is what I think is going on:

I ran the way the ADF gets RESTOM for the tables and plotted it by year for a time series and this is what I get:

ADF_RESTOM

notice the huge spike at the end of the last climo year, which should be 12, but the ADF is calculating year 13, just one month of January.

[cftime.DatetimeNoLeap(2, 2, 1, 0, 0, 0, 0, has_year_zero=True), . . . cftime.DatetimeNoLeap(12, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(13, 1, 1, 0, 0, 0, 0, has_year_zero=True)],

Then when I average on a yearly step: <xarray.DataArray (year: 12)> array([-1.05428614, -0.45157537, -1.63340803, -1.08807593, -1.13306948, -1.04480644, -1.00576457, -1.03258911, -0.48895741, -1.0119733 , -1.18631348, 6.04334543]) Coordinates:

The mean of all the yearly means is: array(-0.42395615)

However, my time series calcs do not have this spike and average (non-rolling) is -1.0073648435570808.

If I ignore the ADF spiked value and average that I get -1.01189266

justin-richling commented 1 year ago

Here is a non-rolling average of RESTOM time series

b e23_alpha16b BLT1850 ne30_t232 033_TimeSeries_ANN_no_running

cecilehannay commented 1 year ago

Update on the discrepancies between tables and timeseries: https://github.com/NCAR/amwg_dev/discussions/357

@klindsay28

adamrher commented 1 year ago

@PeterHjortLauritzen @cecilehannay I did some analysis to characterize what is different about the B-F transition in b-case-33 compared with b-case-32. We want to know why RESTOM changes by 4+ W/m2 in 33, but ~2 W/m2 in 32. Such a large sensitivity is unexpected, I'm told. Here's a spreadsheet looking at global mean values (not from the tables, but from the map plots):

https://docs.google.com/spreadsheets/d/1QUj_rLSttMfrCuuxJzrPNnxpMlB7J986kW1OSMYUhQ8/edit?usp=sharing

A robust response of both is the ~2 W/m2 reduction in FSNT when coupled to the ocean due to thickening clouds. There is also a robust warming of the stratosphere, discussed more at the end.

In 32, FLNT goes down (warms) to offset the decrease in FSNT. This primarily occurs through thickening liquid (TGCLDLWP) and ice clouds (TGCLDIWP), reducing outgoing LW, but a substantial drying (TMQ) offsets this by a slight increase in outgoing clearsky longwave (FLNTC). The reduction in TMQ is consistent with the cooler troposphere.

In 33, FLNT goes up (cools) which amplifies the reduction in FSNT. This occurs due to a large (2.44 W/m2) increase in clearsky longwave. Unlike 32, the atmosphere remains moist (TMQ) and the troposphere does not cool much at all. Without a cooler troposphere, the stratospheric warming likely increases clearsky outgoing longwave.

See here the Temperature response in 32 image

Temperature response in 33

image

I don't know why the Temperature in the stratosphere increases when coupled, but it could possibly be due to the reduction in CO2 in 1850 compared to ~2000 values used in the F-case. This could be tested with a F1850 run, but perhaps someone already knows the cause.

In 33, there is 3X more ice (TGCLDIWP) than 32. In 33, SWCF is excessive over the southern ocean, even know the global mean SWCF is about right. Provided there is nothing buggy with our b-case-33 run, I propose a run identical to 33, but with wsub_scale=0.5, which will reduce SWCF over the mid-latitude regions, while also decreasing the amount of cloud ice. This will increase RESTOM by 1-2 W/m2.

islasimpson commented 1 year ago

For the stratospheric warming, I think it could make sense that it's the difference in CO2 concentrations. Plus maybe ozone differences in the SH. It's probably not necessary to test with an F1850 run as it could just be assessed by looking at how much stratospheric temperatures change over this time period in CMIP6 runs. Those are probably the dominant drives of stratospheric temperature change, at least in the global average.

adamrher commented 1 year ago

That makes sense, supported by that bullseye near the southpole perhaps reflecting an increase in ozone in 1850.

Now I'd like to figure out why the troposphere doesn't cool in 33 like it does in 32. I am seeing a ~1K warmer SST/TS in 33:

Run 32 comparison:

image

Run 33 comparison

image

These differences seem pretty darn large locally, such as the W.Pacific.

tilmes commented 1 year ago

@adamrher are there plots of the tape recorder, just to make sure water vapor is OK?

PeterHjortLauritzen commented 1 year ago

h2o

tilmes commented 1 year ago

@PeterHjortLauritzen is 33 the same as 356? If so, it would make sense that 33 warms more, since there is more water vapor in the stratosphere.

islasimpson commented 1 year ago

Here's a comparison of water vapor between the 1850-1859 periods and the 1990-2009 periods of the CESM2 large ensemble. Indeed, water vapor increases quite a lot between these two time periods in these simulations that I don't think have a representation of methane oxidation.

Screenshot at 2023-10-05 12-07-09