Closed scarrazza closed 5 years ago
@tgiani @Zaharid could you please have a look?
Actually I think CMSZDIFF12
was also one of the dataset where we have changed the treatment of the systematics
@tgiani the treatment of systematics has been changed after this commit, in particular the 12th november in fbce60f5816cfde3e0166b1b5513c462d1868aba.
If you try commit 082b387825d034934dce2b013f4f4ee010b5bea5 (one before your cholesky fix) the chi2 are 1.32663 as in the NNPDF3.1 paper.
Stefano did you change the data files?
On Fri, 7 Dec 2018, 13:07 Stefano Carrazza <notifications@github.com wrote:
@tgiani https://github.com/tgiani the treatment of systematics have been changed after this commit, in particular the 12th november in fbce60f https://github.com/NNPDF/nnpdf/commit/fbce60f5816cfde3e0166b1b5513c462d1868aba .
If you try commit 082b387 https://github.com/NNPDF/nnpdf/commit/082b387825d034934dce2b013f4f4ee010b5bea5 (one before your cholesky fix) the chi2 are 1.32663 as in the NNPDF3.1 paper.
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/NNPDF/nnpdf/issues/345#issuecomment-445227340, or mute the thread https://github.com/notifications/unsubscribe-auth/AFabUs_y3B8UseXzizbCHu3fDQOcmw1Aks5u2mf5gaJpZM4ZIYry .
A very stupid test: I print the cov mat for CMSZDIFF12, then I compute its sqrt using cholesky and I print it, and finally I check that taking the sqrt times its transpose I get again the initial cov mat
-- Generating replica data for CMS
Covariance matrix
===============================================
6959 2480 1057 508.8 251.4 140 68.27 6590 2402 1021 491.6 251.4 130.5 67.31 5972 2151 952.8 457.9 235.4 121.4 64.18 4458 1640 723.6 364.5 192.8 106.7 54.23
2480 1003 418.7 206.9 103.4 57.47 28.03 2495 939.1 405.7 198.7 102.5 53.75 27.58 2229 822.9 368.6 179.9 93.13 48.44 25.41 1658 634.8 282.4 143.1 75.52 42.17 21.44
1057 418.7 191.6 90.68 45.51 25.47 12.45 1069 406.9 177.3 87.11 45.09 23.85 12.2 955.6 355.6 160.7 78.35 40.97 21.43 11.22 710.5 274.2 123.3 62.32 32.92 18.54 9.444
508.8 206.9 90.68 49.75 22.73 12.73 6.219 521.1 200.8 87.83 43.66 22.62 11.94 6.099 465 175.6 79.2 39.27 20.36 10.61 5.563 345 135.3 60.59 31.07 16.34 9.162 4.664
251.4 103.4 45.51 22.73 13.3 6.276 3.121 259 100.2 44.05 21.85 11.37 5.98 3.081 231 87.46 39.52 19.52 10.22 5.328 2.788 171.4 67.51 30.26 15.6 8.156 4.551 2.353
140 57.47 25.47 12.73 6.276 4.595 1.731 144.6 55.85 24.62 12.13 6.318 3.358 1.72 128.9 48.52 22.17 10.86 5.655 2.999 1.59 95.39 37.53 17.08 8.588 4.548 2.631 1.318
68.27 28.03 12.45 6.219 3.121 1.731 1.168 70.26 27.25 12.05 5.938 3.081 1.661 0.8452 62.72 23.62 10.78 5.295 2.762 1.469 0.7648 46.41 18.23 8.264 4.202 2.203 1.251 0.6424
6590 2495 1069 521.1 259 144.6 70.26 6724 2442 1045 506.7 259.8 136 70.12 5962 2180 969.5 468.8 241.4 125.7 66.32 4449 1684 748 377.2 199.1 111.4 56.4
2402 939.1 406.9 200.8 100.2 55.85 27.25 2442 955.6 397.7 195.4 100.7 52.72 27.11 2205 821.8 368.2 179.7 93.18 48.48 25.5 1646 635.7 283.5 144.3 75.85 42.39 21.59
1021 405.7 177.3 87.83 44.05 24.62 12.05 1045 397.7 181.8 84.76 44.06 23.25 11.98 941.9 353.1 159.7 78 40.51 21.22 11.2 702.1 272.7 122.7 62.26 32.88 18.46 9.445
491.6 198.7 87.11 43.66 21.85 12.13 5.938 506.7 195.4 84.76 46.39 21.74 11.49 5.917 455.7 172.8 78.12 38.5 20.08 10.43 5.486 339.2 133.3 59.88 30.69 16.2 9.012 4.623
251.4 102.5 45.09 22.62 11.37 6.318 3.081 259.8 100.7 44.06 21.74 13.14 5.849 3.059 233.5 88.77 40.24 19.85 10.44 5.424 2.821 173.7 68.74 30.85 15.82 8.378 4.667 2.39
130.5 53.75 23.85 11.94 5.98 3.358 1.661 136 52.72 23.25 11.49 5.849 4.109 1.581 121.9 46.38 21.13 10.39 5.425 2.896 1.503 90.87 35.88 16.32 8.286 4.383 2.501 1.274
67.31 27.58 12.2 6.099 3.081 1.72 0.8452 70.12 27.11 11.98 5.917 3.059 1.581 1.14 62.93 23.84 10.85 5.319 2.804 1.493 0.7758 46.88 18.44 8.41 4.253 2.256 1.269 0.667
5972 2229 955.6 465 231 128.9 62.72 5962 2205 941.9 455.7 233.5 121.9 62.93 5546 1997 889.4 429.4 221 115 60.94 4074 1541 685.8 347 183 101.9 51.81
2151 822.9 355.6 175.6 87.46 48.52 23.62 2180 821.8 353.1 172.8 88.77 46.38 23.84 1997 781.2 336.1 164.6 84.78 44.22 23.39 1506 580.6 260 132.8 70.08 38.88 19.86
952.8 368.6 160.7 79.2 39.52 22.17 10.78 969.5 368.2 159.7 78.12 40.24 21.13 10.85 889.4 336.1 160.6 74.23 38.74 20.28 10.7 671.2 261.2 118 60.3 31.91 17.82 9.072
457.9 179.9 78.35 39.27 19.52 10.86 5.295 468.8 179.7 78 38.5 19.85 10.39 5.319 429.4 164.6 74.23 41 18.95 10.07 5.277 325.7 128.4 58.08 29.83 15.84 8.751 4.487
235.4 93.13 40.97 20.36 10.22 5.655 2.762 241.4 93.18 40.51 20.08 10.44 5.425 2.804 221 84.78 38.74 18.95 11.81 5.068 2.738 167.5 66.41 30.05 15.48 8.163 4.535 2.318
121.4 48.44 21.43 10.61 5.328 2.999 1.469 125.7 48.48 21.22 10.43 5.424 2.896 1.493 115 44.22 20.28 10.07 5.068 3.736 1.404 87.74 34.86 15.95 8.135 4.351 2.444 1.254
64.18 25.41 11.22 5.563 2.788 1.59 0.7648 66.32 25.5 11.2 5.486 2.821 1.503 0.7758 60.94 23.39 10.7 5.277 2.738 1.404 1.082 46.21 18.34 8.423 4.29 2.272 1.286 0.6527
4458 1658 710.5 345 171.4 95.39 46.41 4449 1646 702.1 339.2 173.7 90.87 46.88 4074 1506 671.2 325.7 167.5 87.74 46.21 3173 1173 525.2 265.9 140.9 77.98 39.54
1640 634.8 274.2 135.3 67.51 37.53 18.23 1684 635.7 272.7 133.3 68.74 35.88 18.44 1541 580.6 261.2 128.4 66.41 34.86 18.34 1173 486.5 206.6 106 56.1 31.08 15.74
723.6 282.4 123.3 60.59 30.26 17.08 8.264 748 283.5 122.7 59.88 30.85 16.32 8.41 685.8 260 118 58.08 30.05 15.95 8.423 525.2 206.6 101.3 47.83 25.72 14.22 7.331
364.5 143.1 62.32 31.07 15.6 8.588 4.202 377.2 144.3 62.26 30.69 15.82 8.286 4.253 347 132.8 60.3 29.83 15.48 8.135 4.29 265.9 106 47.83 28.38 12.86 7.345 3.694
192.8 75.52 32.92 16.34 8.156 4.548 2.203 199.1 75.85 32.88 16.2 8.378 4.383 2.256 183 70.08 31.91 15.84 8.163 4.351 2.272 140.9 56.1 25.72 12.86 8.611 3.701 1.984
106.7 42.17 18.54 9.162 4.551 2.631 1.251 111.4 42.39 18.46 9.012 4.667 2.501 1.269 101.9 38.88 17.82 8.751 4.535 2.444 1.286 77.98 31.08 14.22 7.345 3.701 3.088 1.032
54.23 21.44 9.444 4.664 2.353 1.318 0.6424 56.4 21.59 9.445 4.623 2.39 1.274 0.667 51.81 19.86 9.072 4.487 2.318 1.254 0.6527 39.54 15.74 7.331 3.694 1.984 1.032 0.8581
Sqrt of Covariance Matrix using Cholesky
===============================================
83.4206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29.7289 10.9176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12.6707 3.84824 4.03035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.09921 2.34276 1.08751 2.42454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.01364 1.26473 0.609867 0.298187 1.46887 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.67824 0.694085 0.380722 0.187223 0.0357634 1.05616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.818383 0.338939 0.192583 0.0923975 0.055158 0.028131 0.57785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78.9973 13.4188 4.07124 1.40831 0.719257 0.824009 0.146794 16.8402 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28.7938 7.6108 3.16918 1.60999 0.944406 0.665279 0.47785 2.89607 6.78268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12.2392 3.83262 1.8539 0.901456 0.62554 0.494779 0.425542 1.00782 0.700176 3.27732 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.89303 2.15312 1.03101 0.639996 0.372935 0.208241 0.175398 0.39847 0.487085 0.22585 2.21212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.01364 1.18229 0.584369 0.343909 0.227212 0.137073 0.0921652 0.161054 0.251459 0.202386 0.11324 1.4066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.56436 0.663451 0.366044 0.184054 0.101009 0.0896633 0.104336 0.0953503 0.101613 0.121145 0.0714273 -0.0322713 0.992158 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.806875 0.329057 0.176168 0.0887644 0.067598 0.0486362 0.0451881 0.0609248 0.0556029 0.0765372 0.0466588 0.0242384 -0.0197198 0.562999 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71.589 9.22729 3.22708 1.33496 0.83064 0.798661 0.332587 9.88839 4.56483 2.72791 1.11241 0.536507 0.373493 0.374241 13.9417 0 0 0 0 0 0 0 0 0 0 0 0 0
25.785 5.1606 2.23955 1.56991 0.948034 0.458426 0.220363 3.64524 2.7404 1.72733 1.24681 0.744895 0.453822 0.235228 2.69684 6.90217 0 0 0 0 0 0 0 0 0 0 0 0
11.4216 2.66063 1.4244 0.723751 0.442376 0.436869 0.264881 1.42423 1.24415 1.06983 0.648253 0.40906 0.308636 0.192659 1.22006 1.1331 3.4416 0 0 0 0 0 0 0 0 0 0 0
5.48905 1.53117 0.721381 0.585447 0.290651 0.180494 0.120711 0.62331 0.664865 0.5092 0.399286 0.253823 0.149501 0.0666034 0.540235 0.730574 0.465852 2.26891 0 0 0 0 0 0 0 0 0 0
2.82184 0.846317 0.4859 0.263074 0.184379 0.086166 0.06113 0.271029 0.365355 0.268032 0.232952 0.202951 0.0852578 0.0867155 0.251397 0.331989 0.335023 0.148985 1.44347 0 0 0 0 0 0 0 0 0
1.45528 0.474124 0.289319 0.127269 0.0873364 0.0856987 0.0737615 0.170643 0.173652 0.158179 0.0912129 0.0803698 0.0950809 0.0898807 0.146969 0.182191 0.187224 0.151559 -0.0208982 1.02158 0 0 0 0 0 0 0 0
0.769354 0.232466 0.143198 0.0702009 0.0457296 0.0645632 0.0311146 0.0980512 0.0923344 0.0997055 0.0526919 0.023114 0.0326584 0.0325463 0.0934966 0.101652 0.0965679 0.0652021 0.0397605 -0.00846689 0.579285 0 0 0 0 0 0 0
53.44 6.34652 2.22141 0.731611 0.511483 0.282787 -0.0122002 7.81158 4.04682 2.37252 0.897766 0.416814 0.546494 0.434149 5.53378 4.08501 2.56218 1.72251 1.01678 1.23608 0.728859 11.2537 0 0 0 0 0 0
19.6594 4.61164 1.82473 1.07432 0.679372 0.393627 0.136355 3.52152 2.33716 1.28024 0.794836 0.626068 0.319757 0.148015 2.32572 2.01291 1.50874 1.24837 0.863436 0.741888 0.531535 1.53972 5.97717 0 0 0 0 0
8.67411 2.24668 1.17779 0.470378 0.285474 0.394508 0.184544 1.57991 1.02529 0.779696 0.39982 0.25008 0.291341 0.255438 1.13632 1.01682 0.925499 0.701114 0.441459 0.477518 0.433489 0.864683 0.645868 3.02586 0 0 0 0
4.36942 1.20924 0.571362 0.39828 0.296518 0.107023 0.0866673 0.748196 0.629959 0.384024 0.295407 0.193002 0.121541 0.0679778 0.608139 0.622938 0.535985 0.409645 0.287343 0.223443 0.190073 0.403382 0.446644 0.264957 2.04252 0 0 0
2.31118 0.623878 0.306387 0.185121 0.108818 0.0767481 0.0274179 0.385855 0.294963 0.23006 0.177094 0.13644 0.0843925 0.0634422 0.306749 0.337626 0.309441 0.259104 0.138667 0.162781 0.106986 0.245149 0.243798 0.26596 0.00767653 1.3286 0 0
1.27906 0.37966 0.216446 0.097297 0.0375708 0.11262 0.0339936 0.24466 0.146494 0.127679 0.0589812 0.0481213 0.0778944 0.0364158 0.164887 0.158809 0.17723 0.109297 0.0676893 0.101171 0.0862944 0.108069 0.114122 0.110392 0.109825 -0.0676182 0.976697 0
0.650079 0.193622 0.114611 0.0498158 0.0437503 0.0360682 0.0253661 0.1096 0.08254 0.0808119 0.0428207 0.0291737 0.036705 0.0512455 0.0859122 0.086814 0.08177 0.0627653 0.0318934 0.0539456 0.0356319 0.0444345 0.045463 0.0891207 0.0284362 0.0338017 -0.0489037 0.547222
Sqrt * Sqrt
===============================================
6959 2480 1057 508.8 251.4 140 68.27 6590 2402 1021 491.6 251.4 130.5 67.31 5972 2151 952.8 457.9 235.4 121.4 64.18 4458 1640 723.6 364.5 192.8 106.7 54.23
2480 1003 418.7 206.9 103.4 57.47 28.03 2495 939.1 405.7 198.7 102.5 53.75 27.58 2229 822.9 368.6 179.9 93.13 48.44 25.41 1658 634.8 282.4 143.1 75.52 42.17 21.44
1057 418.7 191.6 90.68 45.51 25.47 12.45 1069 406.9 177.3 87.11 45.09 23.85 12.2 955.6 355.6 160.7 78.35 40.97 21.43 11.22 710.5 274.2 123.3 62.32 32.92 18.54 9.444
508.8 206.9 90.68 49.75 22.73 12.73 6.219 521.1 200.8 87.83 43.66 22.62 11.94 6.099 465 175.6 79.2 39.27 20.36 10.61 5.563 345 135.3 60.59 31.07 16.34 9.162 4.664
251.4 103.4 45.51 22.73 13.3 6.276 3.121 259 100.2 44.05 21.85 11.37 5.98 3.081 231 87.46 39.52 19.52 10.22 5.328 2.788 171.4 67.51 30.26 15.6 8.156 4.551 2.353
140 57.47 25.47 12.73 6.276 4.595 1.731 144.6 55.85 24.62 12.13 6.318 3.358 1.72 128.9 48.52 22.17 10.86 5.655 2.999 1.59 95.39 37.53 17.08 8.588 4.548 2.631 1.318
68.27 28.03 12.45 6.219 3.121 1.731 1.168 70.26 27.25 12.05 5.938 3.081 1.661 0.8452 62.72 23.62 10.78 5.295 2.762 1.469 0.7648 46.41 18.23 8.264 4.202 2.203 1.251 0.6424
6590 2495 1069 521.1 259 144.6 70.26 6724 2442 1045 506.7 259.8 136 70.12 5962 2180 969.5 468.8 241.4 125.7 66.32 4449 1684 748 377.2 199.1 111.4 56.4
2402 939.1 406.9 200.8 100.2 55.85 27.25 2442 955.6 397.7 195.4 100.7 52.72 27.11 2205 821.8 368.2 179.7 93.18 48.48 25.5 1646 635.7 283.5 144.3 75.85 42.39 21.59
1021 405.7 177.3 87.83 44.05 24.62 12.05 1045 397.7 181.8 84.76 44.06 23.25 11.98 941.9 353.1 159.7 78 40.51 21.22 11.2 702.1 272.7 122.7 62.26 32.88 18.46 9.445
491.6 198.7 87.11 43.66 21.85 12.13 5.938 506.7 195.4 84.76 46.39 21.74 11.49 5.917 455.7 172.8 78.12 38.5 20.08 10.43 5.486 339.2 133.3 59.88 30.69 16.2 9.012 4.623
251.4 102.5 45.09 22.62 11.37 6.318 3.081 259.8 100.7 44.06 21.74 13.14 5.849 3.059 233.5 88.77 40.24 19.85 10.44 5.424 2.821 173.7 68.74 30.85 15.82 8.378 4.667 2.39
130.5 53.75 23.85 11.94 5.98 3.358 1.661 136 52.72 23.25 11.49 5.849 4.109 1.581 121.9 46.38 21.13 10.39 5.425 2.896 1.503 90.87 35.88 16.32 8.286 4.383 2.501 1.274
67.31 27.58 12.2 6.099 3.081 1.72 0.8452 70.12 27.11 11.98 5.917 3.059 1.581 1.14 62.93 23.84 10.85 5.319 2.804 1.493 0.7758 46.88 18.44 8.41 4.253 2.256 1.269 0.667
5972 2229 955.6 465 231 128.9 62.72 5962 2205 941.9 455.7 233.5 121.9 62.93 5546 1997 889.4 429.4 221 115 60.94 4074 1541 685.8 347 183 101.9 51.81
2151 822.9 355.6 175.6 87.46 48.52 23.62 2180 821.8 353.1 172.8 88.77 46.38 23.84 1997 781.2 336.1 164.6 84.78 44.22 23.39 1506 580.6 260 132.8 70.08 38.88 19.86
952.8 368.6 160.7 79.2 39.52 22.17 10.78 969.5 368.2 159.7 78.12 40.24 21.13 10.85 889.4 336.1 160.6 74.23 38.74 20.28 10.7 671.2 261.2 118 60.3 31.91 17.82 9.072
457.9 179.9 78.35 39.27 19.52 10.86 5.295 468.8 179.7 78 38.5 19.85 10.39 5.319 429.4 164.6 74.23 41 18.95 10.07 5.277 325.7 128.4 58.08 29.83 15.84 8.751 4.487
235.4 93.13 40.97 20.36 10.22 5.655 2.762 241.4 93.18 40.51 20.08 10.44 5.425 2.804 221 84.78 38.74 18.95 11.81 5.068 2.738 167.5 66.41 30.05 15.48 8.163 4.535 2.318
121.4 48.44 21.43 10.61 5.328 2.999 1.469 125.7 48.48 21.22 10.43 5.424 2.896 1.493 115 44.22 20.28 10.07 5.068 3.736 1.404 87.74 34.86 15.95 8.135 4.351 2.444 1.254
64.18 25.41 11.22 5.563 2.788 1.59 0.7648 66.32 25.5 11.2 5.486 2.821 1.503 0.7758 60.94 23.39 10.7 5.277 2.738 1.404 1.082 46.21 18.34 8.423 4.29 2.272 1.286 0.6527
4458 1658 710.5 345 171.4 95.39 46.41 4449 1646 702.1 339.2 173.7 90.87 46.88 4074 1506 671.2 325.7 167.5 87.74 46.21 3173 1173 525.2 265.9 140.9 77.98 39.54
1640 634.8 274.2 135.3 67.51 37.53 18.23 1684 635.7 272.7 133.3 68.74 35.88 18.44 1541 580.6 261.2 128.4 66.41 34.86 18.34 1173 486.5 206.6 106 56.1 31.08 15.74
723.6 282.4 123.3 60.59 30.26 17.08 8.264 748 283.5 122.7 59.88 30.85 16.32 8.41 685.8 260 118 58.08 30.05 15.95 8.423 525.2 206.6 101.3 47.83 25.72 14.22 7.331
364.5 143.1 62.32 31.07 15.6 8.588 4.202 377.2 144.3 62.26 30.69 15.82 8.286 4.253 347 132.8 60.3 29.83 15.48 8.135 4.29 265.9 106 47.83 28.38 12.86 7.345 3.694
192.8 75.52 32.92 16.34 8.156 4.548 2.203 199.1 75.85 32.88 16.2 8.378 4.383 2.256 183 70.08 31.91 15.84 8.163 4.351 2.272 140.9 56.1 25.72 12.86 8.611 3.701 1.984
106.7 42.17 18.54 9.162 4.551 2.631 1.251 111.4 42.39 18.46 9.012 4.667 2.501 1.269 101.9 38.88 17.82 8.751 4.535 2.444 1.286 77.98 31.08 14.22 7.345 3.701 3.088 1.032
54.23 21.44 9.444 4.664 2.353 1.318 0.6424 56.4 21.59 9.445 4.623 2.39 1.274 0.667 51.81 19.86 9.072 4.487 2.318 1.254 0.6527 39.54 15.74 7.331 3.694 1.984 1.032 0.8581
at a first look I would say that it s working
@scarrazza I tried the same test and cannot reproduce. I get the same bad chi² for both. I may have forgotten to recompile or something, but I don't think so. Also that change shouldn't make any difference...
I am doing
chi2check 181023-001-sc
After change:
Values of chi2 by dataset
--------------------------
Experiment: NMC Npts: 325 chi2(cent|diag): 1.29935 | 1.00332
Dataset: NMCPD Npts: 121 chi2(cent|diag): 0.92692 | 0.90968
Dataset: NMC Npts: 204 chi2(cent|diag): 1.52025 | 1.05885
Experiment: SLAC Npts: 67 chi2(cent|diag): 0.73120 | 0.68675
Dataset: SLACP Npts: 33 chi2(cent|diag): 0.78722 | 0.80192
Dataset: SLACD Npts: 34 chi2(cent|diag): 0.68787 | 0.57496
Experiment: BCDMS Npts: 581 chi2(cent|diag): 1.20481 | 0.58762
Dataset: BCDMSP Npts: 333 chi2(cent|diag): 1.28552 | 0.67808
Dataset: BCDMSD Npts: 248 chi2(cent|diag): 1.09679 | 0.46616
Experiment: CHORUS Npts: 832 chi2(cent|diag): 1.12325 | 1.09525
Dataset: CHORUSNU Npts: 416 chi2(cent|diag): 1.14197 | 1.30722
Dataset: CHORUSNB Npts: 416 chi2(cent|diag): 1.05992 | 0.88329
Experiment: NTVDMN Npts: 76 chi2(cent|diag): 0.84904 | 0.87437
Dataset: NTVNUDMN Npts: 39 chi2(cent|diag): 0.64963 | 0.70954
Dataset: NTVNBDMN Npts: 37 chi2(cent|diag): 1.05604 | 1.04811
Experiment: HERACOMB Npts: 1145 chi2(cent|diag): 1.15963 | 2.27524
Dataset: HERACOMBNCEM Npts: 159 chi2(cent|diag): 1.41558 | 2.43291
Dataset: HERACOMBNCEP460 Npts: 204 chi2(cent|diag): 1.07406 | 1.97182
Dataset: HERACOMBNCEP575 Npts: 254 chi2(cent|diag): 0.89981 | 1.49385
Dataset: HERACOMBNCEP820 Npts: 70 chi2(cent|diag): 1.14477 | 1.55973
Dataset: HERACOMBNCEP920 Npts: 377 chi2(cent|diag): 1.30151 | 3.26532
Dataset: HERACOMBCCEM Npts: 42 chi2(cent|diag): 1.15985 | 1.26672
Dataset: HERACOMBCCEP Npts: 39 chi2(cent|diag): 1.13053 | 1.10825
Experiment: HERAF2CHARM Npts: 37 chi2(cent|diag): 1.49044 | 0.98288
Dataset: HERAF2CHARM Npts: 37 chi2(cent|diag): 1.49044 | 0.98288
Experiment: F2BOTTOM Npts: 29 chi2(cent|diag): 1.10977 | 1.17429
Dataset: H1HERAF2B Npts: 12 chi2(cent|diag): 0.77584 | 0.43934
Dataset: ZEUSHERAF2B Npts: 17 chi2(cent|diag): 1.34549 | 1.69308
Experiment: DYE886 Npts: 104 chi2(cent|diag): 1.29080 | 2.61638
Dataset: DYE886R Npts: 15 chi2(cent|diag): 0.43613 | 0.48240
Dataset: DYE886P Npts: 89 chi2(cent|diag): 1.43484 | 2.97603
Experiment: DYE605 Npts: 85 chi2(cent|diag): 1.22235 | 0.78873
Dataset: DYE605 Npts: 85 chi2(cent|diag): 1.22235 | 0.78873
Experiment: CDF Npts: 105 chi2(cent|diag): 1.08185 | 0.29427
Dataset: CDFZRAP Npts: 29 chi2(cent|diag): 1.50774 | 0.22786
Dataset: CDFR2KT Npts: 76 chi2(cent|diag): 0.92383 | 0.39362
Experiment: D0 Npts: 45 chi2(cent|diag): 1.16690 | 1.05907
Dataset: D0ZRAP Npts: 28 chi2(cent|diag): 0.60486 | 0.60486
Dataset: D0WEASY Npts: 8 chi2(cent|diag): 2.73064 | 2.74252
Dataset: D0WMASY Npts: 9 chi2(cent|diag): 1.52548 | 0.97578
Experiment: ATLAS Npts: 360 chi2(cent|diag): 1.10243 | 1.18744
Dataset: ATLASWZRAP36PB Npts: 30 chi2(cent|diag): 0.96138 | 0.75397
Dataset: ATLASZHIGHMASS49FB Npts: 5 chi2(cent|diag): 1.53541 | 1.15946
Dataset: ATLASLOMASSDY11EXT Npts: 6 chi2(cent|diag): 0.89489 | 0.34912
Dataset: ATLASWZRAP11 Npts: 34 chi2(cent|diag): 2.09671 | 0.19571
Dataset: ATLASR04JETS36PB Npts: 90 chi2(cent|diag): 0.98864 | 0.94460
Dataset: ATLASR04JETS2P76TEV Npts: 59 chi2(cent|diag): 1.14861 | 0.89101
Dataset: ATLAS1JET11 Npts: 31 chi2(cent|diag): 1.12731 | 1.92028
Dataset: ATLASZPT8TEVMDIST Npts: 44 chi2(cent|diag): 1.05809 | 1.52795
Dataset: ATLASZPT8TEVYDIST Npts: 48 chi2(cent|diag): 2.62662 | 3.29452
Dataset: ATLASTTBARTOT Npts: 3 chi2(cent|diag): 0.87542 | 0.87542
Dataset: ATLASTOPDIFF8TEVTRAPNORM Npts: 10 chi2(cent|diag): 1.47998 | 1.36148
Experiment: CMS Npts: 409 chi2(cent|diag): 1.08602 | 0.64689
Dataset: CMSWEASY840PB Npts: 11 chi2(cent|diag): 0.78462 | 0.80156
Dataset: CMSWMASY47FB Npts: 11 chi2(cent|diag): 1.73848 | 1.41336
Dataset: CMSDY2D11 Npts: 110 chi2(cent|diag): 1.27391 | 1.03805
Dataset: CMSWMU8TEV Npts: 22 chi2(cent|diag): 1.02757 | 0.46006
Dataset: CMSJETS11 Npts: 133 chi2(cent|diag): 0.90008 | 0.23938
Dataset: CMS1JET276TEV Npts: 81 chi2(cent|diag): 1.05354 | 1.23639
Dataset: CMSZDIFF12 Npts: 28 chi2(cent|diag): 3.51865 | 0.61532
Dataset: CMSTTBARTOT Npts: 3 chi2(cent|diag): 0.19177 | 0.19177
Dataset: CMSTOPDIFF8TEVTTRAPNORM Npts: 10 chi2(cent|diag): 0.94081 | 0.55425
Experiment: LHCb Npts: 85 chi2(cent|diag): 1.56329 | 0.97131
Dataset: LHCBZ940PB Npts: 9 chi2(cent|diag): 1.45559 | 0.97615
Dataset: LHCBZEE2FB Npts: 17 chi2(cent|diag): 1.15719 | 0.73371
Dataset: LHCBWZMU7TEV Npts: 29 chi2(cent|diag): 1.87363 | 1.01114
Dataset: LHCBWZMU8TEV Npts: 30 chi2(cent|diag): 1.53178 | 1.06599
- Checking for 4-Sigma deviations from mean
Replica 10 chi2 is too large: 1.51069
- All replicas tested and verified
- Global average: 1.26088 STD: 0.05946
- Central: 1.15838
Thanks for using LHAPDF 6.2.1. Please make sure to cite the paper:
Eur.Phys.J. C75 (2015) 3, 132 (http://arxiv.org/abs/1412.7420)
Before change:
Values of chi2 by dataset
--------------------------
Experiment: NMC Npts: 325 chi2(cent|diag): 1.29935 | 1.00332
Dataset: NMCPD Npts: 121 chi2(cent|diag): 0.92692 | 0.90968
Dataset: NMC Npts: 204 chi2(cent|diag): 1.52025 | 1.05885
Experiment: SLAC Npts: 67 chi2(cent|diag): 0.73120 | 0.68675
Dataset: SLACP Npts: 33 chi2(cent|diag): 0.78722 | 0.80192
Dataset: SLACD Npts: 34 chi2(cent|diag): 0.68787 | 0.57496
Experiment: BCDMS Npts: 581 chi2(cent|diag): 1.20481 | 0.58762
Dataset: BCDMSP Npts: 333 chi2(cent|diag): 1.28552 | 0.67808
Dataset: BCDMSD Npts: 248 chi2(cent|diag): 1.09679 | 0.46616
Experiment: CHORUS Npts: 832 chi2(cent|diag): 1.12325 | 1.09525
Dataset: CHORUSNU Npts: 416 chi2(cent|diag): 1.14197 | 1.30722
Dataset: CHORUSNB Npts: 416 chi2(cent|diag): 1.05992 | 0.88329
Experiment: NTVDMN Npts: 76 chi2(cent|diag): 0.84904 | 0.87437
Dataset: NTVNUDMN Npts: 39 chi2(cent|diag): 0.64963 | 0.70954
Dataset: NTVNBDMN Npts: 37 chi2(cent|diag): 1.05604 | 1.04811
Experiment: HERACOMB Npts: 1145 chi2(cent|diag): 1.15963 | 2.27524
Dataset: HERACOMBNCEM Npts: 159 chi2(cent|diag): 1.41558 | 2.43291
Dataset: HERACOMBNCEP460 Npts: 204 chi2(cent|diag): 1.07406 | 1.97182
Dataset: HERACOMBNCEP575 Npts: 254 chi2(cent|diag): 0.89981 | 1.49385
Dataset: HERACOMBNCEP820 Npts: 70 chi2(cent|diag): 1.14477 | 1.55973
Dataset: HERACOMBNCEP920 Npts: 377 chi2(cent|diag): 1.30151 | 3.26532
Dataset: HERACOMBCCEM Npts: 42 chi2(cent|diag): 1.15985 | 1.26672
Dataset: HERACOMBCCEP Npts: 39 chi2(cent|diag): 1.13053 | 1.10825
Experiment: HERAF2CHARM Npts: 37 chi2(cent|diag): 1.49044 | 0.98288
Dataset: HERAF2CHARM Npts: 37 chi2(cent|diag): 1.49044 | 0.98288
Experiment: F2BOTTOM Npts: 29 chi2(cent|diag): 1.10977 | 1.17429
Dataset: H1HERAF2B Npts: 12 chi2(cent|diag): 0.77584 | 0.43934
Dataset: ZEUSHERAF2B Npts: 17 chi2(cent|diag): 1.34549 | 1.69308
Experiment: DYE886 Npts: 104 chi2(cent|diag): 1.29080 | 2.61638
Dataset: DYE886R Npts: 15 chi2(cent|diag): 0.43613 | 0.48240
Dataset: DYE886P Npts: 89 chi2(cent|diag): 1.43484 | 2.97603
Experiment: DYE605 Npts: 85 chi2(cent|diag): 1.22235 | 0.78873
Dataset: DYE605 Npts: 85 chi2(cent|diag): 1.22235 | 0.78873
Experiment: CDF Npts: 105 chi2(cent|diag): 1.08185 | 0.29427
Dataset: CDFZRAP Npts: 29 chi2(cent|diag): 1.50774 | 0.22786
Dataset: CDFR2KT Npts: 76 chi2(cent|diag): 0.92383 | 0.39362
Experiment: D0 Npts: 45 chi2(cent|diag): 1.16690 | 1.05907
Dataset: D0ZRAP Npts: 28 chi2(cent|diag): 0.60486 | 0.60486
Dataset: D0WEASY Npts: 8 chi2(cent|diag): 2.73064 | 2.74252
Dataset: D0WMASY Npts: 9 chi2(cent|diag): 1.52548 | 0.97578
Experiment: ATLAS Npts: 360 chi2(cent|diag): 1.10243 | 1.18744
Dataset: ATLASWZRAP36PB Npts: 30 chi2(cent|diag): 0.96138 | 0.75397
Dataset: ATLASZHIGHMASS49FB Npts: 5 chi2(cent|diag): 1.53541 | 1.15946
Dataset: ATLASLOMASSDY11EXT Npts: 6 chi2(cent|diag): 0.89489 | 0.34912
Dataset: ATLASWZRAP11 Npts: 34 chi2(cent|diag): 2.09671 | 0.19571
Dataset: ATLASR04JETS36PB Npts: 90 chi2(cent|diag): 0.98864 | 0.94460
Dataset: ATLASR04JETS2P76TEV Npts: 59 chi2(cent|diag): 1.14861 | 0.89101
Dataset: ATLAS1JET11 Npts: 31 chi2(cent|diag): 1.12731 | 1.92028
Dataset: ATLASZPT8TEVMDIST Npts: 44 chi2(cent|diag): 1.05809 | 1.52795
Dataset: ATLASZPT8TEVYDIST Npts: 48 chi2(cent|diag): 2.62662 | 3.29452
Dataset: ATLASTTBARTOT Npts: 3 chi2(cent|diag): 0.87542 | 0.87542
Dataset: ATLASTOPDIFF8TEVTRAPNORM Npts: 10 chi2(cent|diag): 1.47998 | 1.36148
Experiment: CMS Npts: 409 chi2(cent|diag): 1.08602 | 0.64689
Dataset: CMSWEASY840PB Npts: 11 chi2(cent|diag): 0.78462 | 0.80156
Dataset: CMSWMASY47FB Npts: 11 chi2(cent|diag): 1.73848 | 1.41336
Dataset: CMSDY2D11 Npts: 110 chi2(cent|diag): 1.27391 | 1.03805
Dataset: CMSWMU8TEV Npts: 22 chi2(cent|diag): 1.02757 | 0.46006
Dataset: CMSJETS11 Npts: 133 chi2(cent|diag): 0.90008 | 0.23938
Dataset: CMS1JET276TEV Npts: 81 chi2(cent|diag): 1.05354 | 1.23639
Dataset: CMSZDIFF12 Npts: 28 chi2(cent|diag): 3.51865 | 0.61532
Dataset: CMSTTBARTOT Npts: 3 chi2(cent|diag): 0.19177 | 0.19177
Dataset: CMSTOPDIFF8TEVTTRAPNORM Npts: 10 chi2(cent|diag): 0.94081 | 0.55425
Experiment: LHCb Npts: 85 chi2(cent|diag): 1.56329 | 0.97131
Dataset: LHCBZ940PB Npts: 9 chi2(cent|diag): 1.45559 | 0.97615
Dataset: LHCBZEE2FB Npts: 17 chi2(cent|diag): 1.15719 | 0.73371
Dataset: LHCBWZMU7TEV Npts: 29 chi2(cent|diag): 1.87363 | 1.01114
Dataset: LHCBWZMU8TEV Npts: 30 chi2(cent|diag): 1.53178 | 1.06599
- Checking for 4-Sigma deviations from mean
Replica 10 chi2 is too large: 1.51069
@juanrojochacon @lucarottoli some debugging help would be appreciated here, particularly versions of the code that have and don't have this problem.
@tgiani ok, indeed I was looking to the "linearised" master log, the problem seems to appear in 2114409acc442bfa0b98715a54d92c82d0850151
@tgiani @wilsonmr The bugged commit might be:
2114409acc442bfa0b98715a54d92c82d0850151
We need to understand why and how to fix it ASAP (as in the next few hours). It is bugged because the chi2 for cmszdiff goes up before and after. This can be seen with chi2check but not validphys, because it uses a different path.
ok so first thing I notice is Nathan adds this line:
if ((isys.name == "THEORYCORR" || isys.name == "THEORYUNCORR") && !use_theory_errors)
continue; // Continue if systype is theoretical and use_theory_errors == false
so I think we're not using these errors in the construction of the cov mat atm
and the point is that the bugged datasets use these errors right?
In https://github.com/NNPDF/nnpdf/blob/2114409acc442bfa0b98715a54d92c82d0850151/libnnpdf/src/chisquared.cc#L86 it looks like use_theory_errors is hardcoded to be false when perhaps it shouldn't be. @Zaharid tells me that if this is wrong is doesn't have an impact on whether the fit is right or not, but rather it just means that validphys is computing the chi2 per data set incorrectly for data sets with theory errors.
@voisey indeed good point.
Sorry, Edinburgh WiFi is down. I can't download any resources to test these things or log onto my university desktop
So we need to see how to fix this (presumably by flipping that flag), and also add a test that would have cached this.
Are we sure that this doesn't affect things at the fit level? flipping the flag actually changes the output of chi2check
I am not sure, but hopeful. chi2check computes both per-experiment and per-dataset chi². The per-dataset is not used anywhere critical AFAICT.
Yes, if you create a single experiment with just the CMSZDIFF12 dataset you can see that it only affects the dataset:
Values of chi2 by dataset
--------------------------
Experiment: CMS Npts: 28 chi2(cent|diag): 1.32663 | 0.58305
Dataset: CMSZDIFF12 Npts: 28 chi2(cent|diag): 3.53007 | 0.61776
in fact if you look at
https://vp.nnpdf.science/2PVG3z7YQn-dApSKBUk_4w==/#chi2-by-dataset-comparisons https://vp.nnpdf.science/y_Zrcan3RGyBtn5ZRqwUqQ==/#chi2-by-dataset-comparisons
at the fit in common between reports we see that it is just at the validphys level
EDIT: one report being before the commit and one after
suitable test would probably to have a tagged fit which we calculate chi2 on and it should give the same answer
Probably just add something like cmszdiff to the regression tests
On Fri, 7 Dec 2018, 16:50 wilsonmr <notifications@github.com wrote:
suitable test would probably to have a tagged fit which we calculate chi2 on and it should give the same answer
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/NNPDF/nnpdf/issues/345#issuecomment-445293863, or mute the thread https://github.com/notifications/unsubscribe-auth/AFabUv80T2XPZsC-8B5l9PFZ8t6fjPgnks5u2pxdgaJpZM4ZIYry .
Following our discussing today, I found the commit which deteriorates the chi2 of CMSZDIFF12 from 1.32663 to 3.53007 when using NNPDF3.1 NNLO.
https://github.com/NNPDF/nnpdf/commit/97c4c5b3a302f8921ff5430ffd69616b1c398bdd
As you see, this derives from the fix of the cholesky decomposition, not sure exacly how this affects only the zdiff computation.