Open ShastriPaturi opened 1 year ago
Following is a diag_table for z* coordinate with fluxes, and let me know any suggestions. This will be tested by RT run of ufs, if it is okay.
@[SYEAR]@[SMONTH]@[SDAY].@[SHOUR]Z.@[ATMRES].64bit.non-mono 2 @[SYEAR] @[SMONTH] @[SDAY] @[SHOUR] 0 0 3 4 "fv3_history", 0, "hours", 1, "hours", "time" 5 "fv3_history2d", 0, "hours", 1, "hours", "time" 6 ###################### 7 "ocn%4yr%2mo%2dy%2hr", 6, "hours", 1, "hours", "time", 6, "hours", "1901 1 1 0 0 0" 8 "SST%4yr%2mo%2dy", 1, "days", 1, "days", "time", 1, "days", "1901 1 1 0 0 0" 9 ############################################## 10 # static fields 11 "ocean_model", "geolon", "geolon", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 12 "ocean_model", "geolat", "geolat", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 13 #"ocean_model", "geolon_c", "geolon_c", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 14 #"ocean_model", "geolat_c", "geolat_c", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 15 #"ocean_model", "geolon_u", "geolon_u", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 16 #"ocean_model", "geolat_u", "geolat_u", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 17 #"ocean_model", "geolon_v", "geolon_v", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 18 #"ocean_model", "geolat_v", "geolat_v", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 19 #"ocean_model", "depth_ocean", "depth_ocean", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 20 #"ocean_model", "wet", "wet", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 21 "ocean_model", "wet_c", "wet_c", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 22 #"ocean_model", "wet_u", "wet_u", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 23 #"ocean_model", "wet_v", "wet_v", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 24 #"ocean_model", "sin_rot", "sin_rot", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 25 #"ocean_model", "cos_rot", "cos_rot", "ocn%4yr%2mo%2dy%2hr", "all", .false., "none", 2 26 27 # ocean output TSUV and others 28 "ocean_model", "SSH", "SSH", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 29 #"ocean_model", "SST", "SST", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 30 #"ocean_model", "SSS", "SSS", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 31 #"ocean_model", "speed", "speed", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 32 #"ocean_model", "SSU", "SSU", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 33 #"ocean_model", "SSV", "SSV", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 34 #"ocean_model", "frazil", "frazil", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 35 #"ocean_model", "ePBL_h_ML", "ePBL", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 36 #"ocean_model", "MLD_003", "MLD_003", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 37 "ocean_model", "MLD_0125", "MLD_0125", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 38 39 # save daily SST 40 "ocean_model", "geolon", "geolon", "SST%4yr%2mo%2dy", "all", .false., "none", 2 41 "ocean_model", "geolat", "geolat", "SST%4yr%2mo%2dy", "all", .false., "none", 2 42 "ocean_model", "SST", "sst", "SST%4yr%2mo%2dy", "all", .true., "none", 2 43 44 # Z-Space Fields Provided for CMIP6 (CMOR Names): 45 #=============================================== 46 "ocean_model_z","uo","uo" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 47 "ocean_model_z","vo","vo" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 48 "ocean_model_z","so","so" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 49 "ocean_model_z","temp","temp" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 50 51 # forcing 52 "ocean_model", "taux", "taux", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 53 "ocean_model", "tauy", "tauy", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 54 "ocean_model", "latent", "latent", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 55 "ocean_model", "sensible", "sensible", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 56 "ocean_model", "SW", "SW", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 57 "ocean_model", "LW", "LW", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 58 "ocean_model", "evap", "evap", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 59 "ocean_model", "lprec", "lprec", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 60 "ocean_model", "lrunoff", "lrunoff", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 61 # "ocean_model", "frunoff", "frunoff", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 62 "ocean_model", "fprec", "fprec", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 63 "ocean_model", "LwLatSens", "LwLatSens", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2 64 "ocean_model", "Heat_PmE", "Heat_PmE", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
That won't work @hyunchul386 :
As a reminder, this is the diag_table that is used for the 6 hour cycle (9hr forecat): https://github.com/guillaumevernieres/global-workflow/blob/develop/parm/parm_fv3diag/diag_table_da
Following is a slimed version with 6 hour output frequency 6 ###################### 7 "ocn_da%4yr%2mo%2dy%2hr", 6, "hours", 1, "hours", "time", 6, "hours", "1901 1 1 0 0 0" 8 ############################################## 9 # static fields 10 "ocean_model", "geolon", "geolon", "ocn_da%4yr%2mo%2dy%2hr", "all", .false., "none", 2 11 "ocean_model", "geolat", "geolat", "ocn_da%4yr%2mo%2dy%2hr", "all", .false., "none", 2 12 13 # ocean output SSH and MLD 14 "ocean_model", "SSH", "SSH", "ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 15 "ocean_model", "MLD_0125", "MLD_0125", "ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 16 17 # Z*-Space Fields: 18 #=============================================== 19 "ocean_model_z","uo","uo" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 20 "ocean_model_z","vo","vo" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 21 "ocean_model_z","so","so" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 22 "ocean_model_z","temp","temp" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2
Following is from the test diag_table in ufs of 6 ###################### 7 "ocn_da%4yr%2mo%2dy%2hr", 1, "hours", 1, "hours", "time", 1, "hours", "1901 1 1 0 0 0" 8 ############################################## 9 # static fields 10 "ocean_model", "geolon", "geolon", "ocn_da%4yr%2mo%2dy%2hr", "all", .false., "none", 2 11 "ocean_model", "geolat", "geolat", "ocn_da%4yr%2mo%2dy%2hr", "all", .false., "none", 2 12 13 # ocean output SSH and MLD 14 "ocean_model", "SSH", "SSH", "ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 15 "ocean_model", "MLD_0125", "MLD_0125", "ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 16 17 # Z*-Space: 18 #=============================================== 19 "ocean_model_z","uo","uo" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 20 "ocean_model_z","vo","vo" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 21 "ocean_model_z","ho","ho" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 22 "ocean_model_z","so","so" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2 23 "ocean_model_z","temp","temp" ,"ocn_da%4yr%2mo%2dy%2hr","all",.false.,"none",2
The depths of 33 levels are 2.5, 10, 20, 32.5, 51.25, 75, 100, 125, 156.25, 200, 250, 312.5, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1537.5, 1750, 2062.5, 2500, 3000, 3500, 4000, 4500, 5000, 5500
The updated diag_table_da is 3 "ocn_da%4yr%2mo%2dy%2hr", 1, "hours", 1, "hours", "time", 1, "hours" 4 5 "ocean_model", "geolon", "geolon", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 6 "ocean_model", "geolat", "geolat", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 7 "ocean_model", "SSH", "ave_ssh", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 8 "ocean_model", "MLD_0125", "MLD", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 9 "ocean_model_z", "u", "u", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 10 "ocean_model_z", "v", "v", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 11 "ocean_model_z", "h", "h", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 12 "ocean_model_z", "salt", "Salt", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2 13 "ocean_model_z", "temp", "Temp", "ocn_da%4yr%2mo%2dy%2hr", "all", "false", "none", 2
the change is in the branch of "feature/ocn_da_zstar" in https://github.com/hyunchul386/global-workflow.git
Front locations in python from 5 degree z* ocean output of ufs-weather-model,
Thanks @hyunchul386 . We would like to have your ocean front utility as part of the "verify" step of the global-workflow. Can you coordinate with @AndrewEichmann-NOAA as to how to do this?
Sure, I will learn about how to put it into verify step in g-w to @AndrewEichmann-NOAA.
The python code of the GS front plot was added into the ctest (#11) of GDASApp in G-W, Start 1: test_gdasapp_convert_bufr_temp_dbuoy 1/11 Test #1: test_gdasapp_convert_bufr_temp_dbuoy ....... Passed 8.83 sec Start 2: test_gdasapp_convert_bufr_salt_dbuoy 2/11 Test #2: test_gdasapp_convert_bufr_salt_dbuoy ....... Passed 0.22 sec Start 3: test_gdasapp_convert_bufr_temp_mbuoyb 3/11 Test #3: test_gdasapp_convert_bufr_temp_mbuoyb ...... Passed 0.21 sec Start 4: test_gdasapp_convert_bufr_salt_mbuoyb 4/11 Test #4: test_gdasapp_convert_bufr_salt_mbuoyb ...... Passed 0.21 sec Start 5: test_gdasapp_convert_bufr_tesacprof 5/11 Test #5: test_gdasapp_convert_bufr_tesacprof ........ Passed 0.24 sec Start 6: test_gdasapp_convert_bufr_trkobprof 6/11 Test #6: test_gdasapp_convert_bufr_trkobprof ........ Passed 0.22 sec Start 7: test_gdasapp_convert_bufr_sfcships 7/11 Test #7: test_gdasapp_convert_bufr_sfcships ......... Passed 0.22 sec Start 8: test_gdasapp_convert_bufr_sfcshipsu 8/11 Test #8: test_gdasapp_convert_bufr_sfcshipsu ........ Passed 0.21 sec Start 9: test_gdasapp_soca_obsdb 9/11 Test #9: test_gdasapp_soca_obsdb ....................Failed 0.29 sec Start 10: test_gdasapp_soca_nsst_increment_to_mom6 10/11 Test #10: test_gdasapp_soca_nsst_increment_to_mom6 ...Failed 15.72 sec Start 11: test_gdasapp_soca_front_plots_mom6 11/11 Test #11: test_gdasapp_soca_front_plots_mom6 ......... Passed 4.48 sec
ctest #9/10 were failed due to the EVA module, and were passed with GDAS modules. Following is ctest output of test_gdasapp_soca_front_plots_mom6
The updated GDASApp was pushed as the branch of feature/front_plot to https://github.com/hyunchul386/GDASApp.git
Update the code : adding input yaml file for parameters which are dependent with the resolution, change the color range (min/max in the region), Following is the updated output of the ctest
Code was update with the commit of "add yaml" to the branch of feature/front_plot, https://github.com/hyunchul386/GDASApp.git
Update for adding tickmarks, and pushed repository as "add tickmark"
Adding SST field with GS front
pushed with "add SST" to the repository
@hyunchul386 :
- checked with Kuroshio
Add more levels to the sst color map @hyunchul386 .
Are those cold spots real?
On Wed, May 31, 2023 at 2:38 PM Guillaume Vernieres < @.***> wrote:
- checked with Kuroshio [image: front_output_KS_SST] https://user-images.githubusercontent.com/14810515/242372196-4de9652c-6d26-4637-b311-3b925ac91cd9.png
Add more levels to the sst color map @hyunchul386 https://github.com/hyunchul386 .
— Reply to this email directly, view it on GitHub https://github.com/NOAA-EMC/godas/issues/481#issuecomment-1570725635, or unsubscribe https://github.com/notifications/unsubscribe-auth/AOBXXGJQK35PFFI2FEVURM3XI6FYPANCNFSM6AAAAAAXWFWPJA . You are receiving this because you were mentioned.Message ID: @.***>
-- Andrew Eichmann IMSG at NOAA/NWS/NCEP/EMC 5830 University Research Court, Office #2875 College Park, MD 20740 USA @.*** cell (for the duration): 401-477-2702 office: 301-683-0506 <%2B1%20301%20683%203501>
The spots seem to be due to islands
First look for NAVO data in front plot. This is just a test for NAVO data on 2021-09-01 with the front plot data on 2021-03-22. Red is from NAVO, black is from 5 deg UWM.
Same test but with SST,
@hyunchul386 , your sst colormap resolution is too coarse.
updated for SST
NAVO data for Kuroshio convers only part of it,
@hyunchul386 . Your choice of colormap and "color resolution" isn't working. You are not going to see anything interesting with 1/2 dozen sst contours. Increase the resolution to at least a dozen relevant contours.
put the updated code for NAVO data into ctest of GDASApp:
Test project /scratch1/NCEPDEV/climate/Hyun-Chul.Lee/global-workflow_fplot/sorc/gdas.cd/build/test/soca Start 11: test_gdasapp_soca_front_plots_mom6 1/1 Test #11: test_gdasapp_soca_front_plots_mom6 ... Passed 4.92 sec
100% tests passed, 0 tests failed out of 1
ctest results for the updated plot
Purpose Adapt the Ferret code in python to re-plot the Gulf Stream frontal location.
Objective To use these scripts in the global-workflow as part of diagnostics.