Closed fernando-aristizabal closed 1 year ago
FN's are currently being assigned when negative_categories=None within compute_metrics_table()
negative_categories=None
compute_metrics_table()
Using the following crosstab table:
cdf_multi = pd.DataFrame( { "band": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "candidate_values": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "benchmark_values": [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], "counts": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] } )
and setting negative_categories=None:
metrics_df = _compute_categorical_metrics( cdf_multi, metrics="critical_success_index", positive_categories=[1,2,3], negative_categories=None, average="weighted", weights=[1, 2, 3] )
Crosstab_df with fn conditions being assigned erroneously:
band candidate_values benchmark_values counts weights conditions 0 1 1.0 1.0 1.0 1.0 tp 1 1 1.0 2.0 2.0 1.0 tp 2 1 1.0 3.0 3.0 1.0 tp 3 1 2.0 4.0 4.0 2.0 fp 4 1 2.0 1.0 5.0 2.0 tp 5 1 2.0 2.0 6.0 2.0 tp 6 1 3.0 3.0 7.0 3.0 tp 7 1 3.0 4.0 8.0 3.0 fp 8 1 3.0 1.0 9.0 3.0 tp 9 1 4.0 2.0 10.0 NaN fn 10 1 4.0 3.0 11.0 NaN fn 11 1 4.0 4.0 12.0 NaN None
Even though functionality not currently in main is illustrated, the behavior is still there.
FNs should be assigned when negative_categories=None
FN's are currently being assigned when
negative_categories=None
withincompute_metrics_table()
Current behavior
Using the following crosstab table:
and setting
negative_categories=None
:Crosstab_df with fn conditions being assigned erroneously:
Even though functionality not currently in main is illustrated, the behavior is still there.
Expected behavior
FNs should be assigned when
negative_categories=None