Open jdha opened 4 years ago
From Romain B-B:
"same than in TKE (mixing lenght depending on ice thick) but in GLS we can not impose a mixing length in the first level as TKE, so we impose an unrealistic roughness wich will generate the wanted mixing length... As in TKE, this "ugly trick" solves the problem in artic (because of tidal mixing now the background is very low in artic ocean and fresh water is trapped in the first layers) and it has solved also my polinia problem in antarctic !... I didn't understood really why, I suspect because with the very hudge friction there is a slowdown of ocean/ice and a decrease of to strong shear in antartica...."
MODULE zdfgls
!!======================================================================
!! *** MODULE zdfgls ***
!! Ocean physics: vertical mixing coefficient computed from the gls
!! turbulent closure parameterization
!!======================================================================
!! History : 3.0 ! 2009-09 (G. Reffray) Original code
!! 3.3 ! 2010-10 (C. Bricaud) Add in the reference
!! 4.0 ! 2017-04 (G. Madec) remove CPP keys & avm at t-point only
!! - ! 2017-05 (G. Madec) add top friction as boundary condition
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! zdf_gls : update momentum and tracer Kz from a gls scheme
!! zdf_gls_init : initialization, namelist read, and parameters control
!! gls_rst : read/write gls restart in ocean restart file
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE domvvl ! ocean space and time domain : variable volume layer
USE zdfdrg , ONLY : r_z0_top , r_z0_bot ! top/bottom roughness
USE zdfdrg , ONLY : rCdU_top , rCdU_bot ! top/bottom friction
USE sbc_oce ! surface boundary condition: ocean
USE phycst ! physical constants
USE zdfmxl ! mixed layer
USE sbcwave , ONLY : hsw ! significant wave height
!
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp ! MPP manager
USE prtctl ! Print control
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
IMPLICIT NONE
PRIVATE
PUBLIC zdf_gls ! called in zdfphy
PUBLIC zdf_gls_init ! called in zdfphy
PUBLIC gls_rst ! called in zdfphy
!
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hmxl_n !: now mixing length
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zwall !: wall function
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ustar2_surf !: Squared surface velocity scale at T-points
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ustar2_top !: Squared top velocity scale at T-points
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ustar2_bot !: Squared bottom velocity scale at T-points
! !! ** Namelist namzdf_gls **
LOGICAL :: ln_length_lim ! use limit on the dissipation rate under stable stratification (Galperin et al. 1988)
LOGICAL :: ln_sigpsi ! Activate Burchard (2003) modification for k-eps closure & wave breaking mixing
INTEGER :: nn_bc_surf ! surface boundary condition (=0/1)
INTEGER :: nn_bc_bot ! bottom boundary condition (=0/1)
INTEGER :: nn_z0_met ! Method for surface roughness computation
INTEGER :: nn_z0_met_i ! Method for surface roughness computation under ice
INTEGER :: nn_stab_func ! stability functions G88, KC or Canuto (=0/1/2)
INTEGER :: nn_clos ! closure 0/1/2/3 MY82/k-eps/k-w/gen
REAL(wp) :: rn_clim_galp ! Holt 2008 value for k-eps: 0.267
REAL(wp) :: rn_epsmin ! minimum value of dissipation (m2/s3)
REAL(wp) :: rn_emin ! minimum value of TKE (m2/s2)
REAL(wp) :: rn_charn ! Charnock constant for surface breaking waves mixing : 1400. (standard) or 2.e5 (Stacey value)
REAL(wp) :: rn_crban ! Craig and Banner constant for surface breaking waves mixing
REAL(wp) :: rn_hsro ! Minimum surface roughness
REAL(wp) :: rn_hsro_i ! Surface roughness under ice in constant case nn_z0_met_i = 1
REAL(wp) :: rn_frac_hs ! Fraction of wave height as surface roughness (if nn_z0_met > 1)
REAL(wp) :: rcm_sf = 0.73_wp ! Shear free turbulence parameters
REAL(wp) :: ra_sf = -2.0_wp ! Must be negative -2 < ra_sf < -1
REAL(wp) :: rl_sf = 0.2_wp ! 0 <rl_sf<vkarmn
REAL(wp) :: rghmin = -0.28_wp
REAL(wp) :: rgh0 = 0.0329_wp
REAL(wp) :: rghcri = 0.03_wp
REAL(wp) :: ra1 = 0.92_wp
REAL(wp) :: ra2 = 0.74_wp
REAL(wp) :: rb1 = 16.60_wp
REAL(wp) :: rb2 = 10.10_wp
REAL(wp) :: re2 = 1.33_wp
REAL(wp) :: rl1 = 0.107_wp
REAL(wp) :: rl2 = 0.0032_wp
REAL(wp) :: rl3 = 0.0864_wp
REAL(wp) :: rl4 = 0.12_wp
REAL(wp) :: rl5 = 11.9_wp
REAL(wp) :: rl6 = 0.4_wp
REAL(wp) :: rl7 = 0.0_wp
REAL(wp) :: rl8 = 0.48_wp
REAL(wp) :: rm1 = 0.127_wp
REAL(wp) :: rm2 = 0.00336_wp
REAL(wp) :: rm3 = 0.0906_wp
REAL(wp) :: rm4 = 0.101_wp
REAL(wp) :: rm5 = 11.2_wp
REAL(wp) :: rm6 = 0.4_wp
REAL(wp) :: rm7 = 0.0_wp
REAL(wp) :: rm8 = 0.318_wp
REAL(wp) :: rtrans = 0.1_wp
REAL(wp) :: rc02, rc02r, rc03, rc04 ! coefficients deduced from above parameters
REAL(wp) :: rsbc_tke1, rsbc_tke2, rfact_tke ! - - - -
REAL(wp) :: rsbc_psi1, rsbc_psi2, rfact_psi ! - - - -
REAL(wp) :: rsbc_zs1, rsbc_zs2 ! - - - -
REAL(wp) :: rc0, rc2, rc3, rf6, rcff, rc_diff ! - - - -
REAL(wp) :: rs0, rs1, rs2, rs4, rs5, rs6 ! - - - -
REAL(wp) :: rd0, rd1, rd2, rd3, rd4, rd5 ! - - - -
REAL(wp) :: rsc_tke, rsc_psi, rpsi1, rpsi2, rpsi3, rsc_psi0 ! - - - -
REAL(wp) :: rpsi3m, rpsi3p, rpp, rmm, rnn ! - - - -
!
REAL(wp) :: r2_3 = 2._wp/3._wp ! constant=2/3
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: zdfgls.F90 12489 2020-02-28 15:55:11Z davestorkey $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION zdf_gls_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION zdf_gls_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( hmxl_n(jpi,jpj,jpk) , ustar2_surf(jpi,jpj) , &
& zwall (jpi,jpj,jpk) , ustar2_top (jpi,jpj) , ustar2_bot(jpi,jpj) , STAT= zdf_gls_alloc )
!
CALL mpp_sum ( 'zdfgls', zdf_gls_alloc )
IF( zdf_gls_alloc /= 0 ) CALL ctl_stop( 'STOP', 'zdf_gls_alloc: failed to allocate arrays' )
END FUNCTION zdf_gls_alloc
SUBROUTINE zdf_gls( kt, Kbb, Kmm, p_sh2, p_avm, p_avt )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_gls ***
!!
!! ** Purpose : Compute the vertical eddy viscosity and diffusivity
!! coefficients using the GLS turbulent closure scheme.
!!----------------------------------------------------------------------
USE zdf_oce , ONLY : en, avtb, avmb ! ocean vertical physics
!!
INTEGER , INTENT(in ) :: kt ! ocean time step
INTEGER , INTENT(in ) :: Kbb, Kmm ! ocean time level indices
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: p_sh2 ! shear production term
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: p_avm, p_avt ! momentum and tracer Kz (w-points)
!
INTEGER :: ji, jj, jk ! dummy loop arguments
INTEGER :: ibot, ibotm1 ! local integers
INTEGER :: itop, itopp1 ! - -
REAL(wp) :: zesh2, zsigpsi, zcoef, zex1 , zex2 ! local scalars
REAL(wp) :: ztx2, zty2, zup, zdown, zcof, zdir ! - -
REAL(wp) :: zratio, zrn2, zflxb, sh , z_en ! - -
REAL(wp) :: prod, buoy, diss, zdiss, sm ! - -
REAL(wp) :: gh, gm, shr, dif, zsqen, zavt, zavm ! - -
REAL(wp) :: zmsku, zmskv ! - -
REAL(wp), DIMENSION(jpi,jpj) :: zdep
REAL(wp), DIMENSION(jpi,jpj) :: zkar
REAL(wp), DIMENSION(jpi,jpj) :: zflxs ! Turbulence fluxed induced by internal waves
REAL(wp), DIMENSION(jpi,jpj) :: zhsro ! Surface roughness (surface waves)
REAL(wp), DIMENSION(jpi,jpj,jpk) :: eb ! tke at time before
REAL(wp), DIMENSION(jpi,jpj,jpk) :: hmxl_b ! mixing length at time before
REAL(wp), DIMENSION(jpi,jpj,jpk) :: eps ! dissipation rate
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwall_psi ! Wall function use in the wb case (ln_sigpsi)
REAL(wp), DIMENSION(jpi,jpj,jpk) :: psi ! psi at time now
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zd_lw, zd_up, zdiag ! lower, upper and diagonal of the matrix
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zstt, zstm ! stability function on tracer and momentum
!!--------------------------------------------------------------------
!
! Preliminary computing
ustar2_surf(:,:) = 0._wp ; psi(:,:,:) = 0._wp
ustar2_top (:,:) = 0._wp ; zwall_psi(:,:,:) = 0._wp
ustar2_bot (:,:) = 0._wp
! Compute surface, top and bottom friction at T-points
DO_2D_00_00
!
! surface friction
ustar2_surf(ji,jj) = r1_rho0 * taum(ji,jj) * tmask(ji,jj,1)
!
!!gm Rq we may add here r_ke0(_top/_bot) ? ==>> think about that...
! bottom friction (explicit before friction)
zmsku = ( 2._wp - umask(ji-1,jj,mbkt(ji,jj)) * umask(ji,jj,mbkt(ji,jj)) )
zmskv = ( 2._wp - vmask(ji,jj-1,mbkt(ji,jj)) * vmask(ji,jj,mbkt(ji,jj)) ) ! (CAUTION: CdU<0)
ustar2_bot(ji,jj) = - rCdU_bot(ji,jj) * SQRT( ( zmsku*( uu(ji,jj,mbkt(ji,jj),Kbb)+uu(ji-1,jj,mbkt(ji,jj),Kbb) ) )**2 &
& + ( zmskv*( vv(ji,jj,mbkt(ji,jj),Kbb)+vv(ji,jj-1,mbkt(ji,jj),Kbb) ) )**2 )
END_2D
IF( ln_isfcav ) THEN !top friction
DO_2D_00_00
zmsku = ( 2. - umask(ji-1,jj,mikt(ji,jj)) * umask(ji,jj,mikt(ji,jj)) )
zmskv = ( 2. - vmask(ji,jj-1,mikt(ji,jj)) * vmask(ji,jj,mikt(ji,jj)) ) ! (CAUTION: CdU<0)
ustar2_top(ji,jj) = - rCdU_top(ji,jj) * SQRT( ( zmsku*( uu(ji,jj,mikt(ji,jj),Kbb)+uu(ji-1,jj,mikt(ji,jj),Kbb) ) )**2 &
& + ( zmskv*( vv(ji,jj,mikt(ji,jj),Kbb)+vv(ji,jj-1,mikt(ji,jj),Kbb) ) )**2 )
END_2D
ENDIF
SELECT CASE ( nn_z0_met ) !== Set surface roughness length ==!
CASE ( 0 ) ! Constant roughness
zhsro(:,:) = rn_hsro
CASE ( 1 ) ! Standard Charnock formula
zhsro(:,:) = MAX( rsbc_zs1 * ustar2_surf(:,:) , rn_hsro )
CASE ( 2 ) ! Roughness formulae according to Rascle et al., Ocean Modelling (2008)
!!gm faster coding : the 2 comment lines should be used
!!gm zcof = 2._wp * 0.6_wp / 28._wp
!!gm zdep(:,:) = 30._wp * TANH( zcof/ SQRT( MAX(ustar2_surf(:,:),rsmall) ) ) ! Wave age (eq. 10)
zdep (:,:) = 30.*TANH( 2.*0.3/(28.*SQRT(MAX(ustar2_surf(:,:),rsmall))) ) ! Wave age (eq. 10)
zhsro(:,:) = MAX(rsbc_zs2 * ustar2_surf(:,:) * zdep(:,:)**1.5, rn_hsro) ! zhsro = rn_frac_hs * Hsw (eq. 11)
CASE ( 3 ) ! Roughness given by the wave model (coupled or read in file)
zhsro(:,:) = rn_frac_hs * hsw(:,:) ! (rn_frac_hs=1.6 see Eq. (5) of Rascle et al. 2008 )
END SELECT
!
#if defined key_si3 && defined key_cice
SELECT CASE( nn_z0_met_i ) ! Type of scaling under sea-ice
!
CASE( 1 ) ! scaling with constant sea-ice thickness rn_hsro_i defined in namelist
DO_2D_00_00
zhsro(ji,jj) = ( ( 1. - fr_i(ji,jj) ) * zhsro(ji,jj) + fr_i(ji,jj) * rn_hsro_i ) * tmask(ji,jj,1) + &
& + (1._wp - tmask(:,:,1)) * rn_hsro
END_2D
!
CASE( 2 ) ! scaling with mean sea-ice thickness
DO_2D_00_00
#if defined key_si3
zhsro(ji,jj) = ( ( 1. - fr_i(ji,jj) ) * zhsro(ji,jj) + fr_i(ji,jj) * hm_i(ji,jj) * 2. / vkarmn ) * tmask(ji,jj,1) + &
& + (1._wp - tmask(:,:,1)) * rn_hsro
#elif defined key_cice
zmaxice = MAXVAL( h_i(ji,jj,:) )
zhsro(ji,jj) = ( ( 1. - fr_i(ji,jj) ) * zhsro(ji,jj) + fr_i(ji,jj) * zmaxice / vkarmn ) * tmask(ji,jj,1) + &
& + (1._wp - tmask(:,:,1)) * rn_hsro
#endif
END_2D
!
CASE( 3 ) ! scaling with max sea-ice thickness
DO_2D_00_00
zmaxice = MAXVAL( h_i(ji,jj,:) )
zhsro(ji,jj) = ( ( 1. - fr_i(ji,jj) ) * zhsro(ji,jj) + fr_i(ji,jj) * zmaxice / vkarmn ) * tmask(ji,jj,1) + &
& + (1._wp - tmask(:,:,1)) * rn_hsro
END_2D
!
END SELECT
#endif
!
DO_3D_10_10( 2, jpkm1 )
eps(ji,jj,jk) = rc03 * en(ji,jj,jk) * SQRT( en(ji,jj,jk) ) / hmxl_n(ji,jj,jk)
END_3D
! Save tke at before time step
eb (:,:,:) = en (:,:,:)
hmxl_b(:,:,:) = hmxl_n(:,:,:)
IF( nn_clos == 0 ) THEN ! Mellor-Yamada
DO_3D_00_00( 2, jpkm1 )
zup = hmxl_n(ji,jj,jk) * gdepw(ji,jj,mbkt(ji,jj)+1,Kmm)
zdown = vkarmn * gdepw(ji,jj,jk,Kmm) * ( -gdepw(ji,jj,jk,Kmm) + gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) )
zcoef = ( zup / MAX( zdown, rsmall ) )
zwall (ji,jj,jk) = ( 1._wp + re2 * zcoef*zcoef ) * tmask(ji,jj,jk)
END_3D
ENDIF
!!---------------------------------!!
!! Equation to prognostic k !!
!!---------------------------------!!
!
! Now Turbulent kinetic energy (output in en)
! -------------------------------
! Resolution of a tridiagonal linear system by a "methode de chasse"
! computation from level 2 to jpkm1 (e(1) computed after and e(jpk)=0 ).
! The surface boundary condition are set after
! The bottom boundary condition are also set after. In standard e(bottom)=0.
! zdiag : diagonal zd_up : upper diagonal zd_lw : lower diagonal
! Warning : after this step, en : right hand side of the matrix
DO_3D_00_00( 2, jpkm1 )
!
buoy = - p_avt(ji,jj,jk) * rn2(ji,jj,jk) ! stratif. destruction
!
diss = eps(ji,jj,jk) ! dissipation
!
zdir = 0.5_wp + SIGN( 0.5_wp, p_sh2(ji,jj,jk) + buoy ) ! zdir =1(=0) if shear(ji,jj,jk)+buoy >0(<0)
!
zesh2 = zdir*(p_sh2(ji,jj,jk)+buoy)+(1._wp-zdir)*p_sh2(ji,jj,jk) ! production term
zdiss = zdir*(diss/en(ji,jj,jk)) +(1._wp-zdir)*(diss-buoy)/en(ji,jj,jk) ! dissipation term
!!gm better coding, identical results
! zesh2 = p_sh2(ji,jj,jk) + zdir*buoy ! production term
! zdiss = ( diss - (1._wp-zdir)*buoy ) / en(ji,jj,jk) ! dissipation term
!!gm
!
! Compute a wall function from 1. to rsc_psi*zwall/rsc_psi0
! Note that as long that Dirichlet boundary conditions are NOT set at the first and last levels (GOTM style)
! there is no need to set a boundary condition for zwall_psi at the top and bottom boundaries.
! Otherwise, this should be rsc_psi/rsc_psi0
IF( ln_sigpsi ) THEN
zsigpsi = MIN( 1._wp, zesh2 / eps(ji,jj,jk) ) ! 0. <= zsigpsi <= 1.
zwall_psi(ji,jj,jk) = rsc_psi / &
& ( zsigpsi * rsc_psi + (1._wp-zsigpsi) * rsc_psi0 / MAX( zwall(ji,jj,jk), 1._wp ) )
ELSE
zwall_psi(ji,jj,jk) = 1._wp
ENDIF
!
! building the matrix
zcof = rfact_tke * tmask(ji,jj,jk)
! ! lower diagonal, in fact not used for jk = 2 (see surface conditions)
zd_lw(ji,jj,jk) = zcof * ( p_avm(ji,jj,jk ) + p_avm(ji,jj,jk-1) ) / ( e3t(ji,jj,jk-1,Kmm) * e3w(ji,jj,jk,Kmm) )
! ! upper diagonal, in fact not used for jk = ibotm1 (see bottom conditions)
zd_up(ji,jj,jk) = zcof * ( p_avm(ji,jj,jk+1) + p_avm(ji,jj,jk ) ) / ( e3t(ji,jj,jk ,Kmm) * e3w(ji,jj,jk,Kmm) )
! ! diagonal
zdiag(ji,jj,jk) = 1._wp - zd_lw(ji,jj,jk) - zd_up(ji,jj,jk) + rn_Dt * zdiss * wmask(ji,jj,jk)
! ! right hand side in en
en(ji,jj,jk) = en(ji,jj,jk) + rn_Dt * zesh2 * wmask(ji,jj,jk)
END_3D
!
zdiag(:,:,jpk) = 1._wp
!
! Set surface condition on zwall_psi (1 at the bottom)
zwall_psi(:,:, 1 ) = zwall_psi(:,:,2)
zwall_psi(:,:,jpk) = 1._wp
!
! Surface boundary condition on tke
! ---------------------------------
!
SELECT CASE ( nn_bc_surf )
!
CASE ( 0 ) ! Dirichlet boundary condition (set e at k=1 & 2)
! First level
en (:,:,1) = MAX( rn_emin , rc02r * ustar2_surf(:,:) * (1._wp + rsbc_tke1)**r2_3 )
zd_lw(:,:,1) = en(:,:,1)
zd_up(:,:,1) = 0._wp
zdiag(:,:,1) = 1._wp
!
! One level below
en (:,:,2) = MAX( rc02r * ustar2_surf(:,:) * ( 1._wp + rsbc_tke1 * ((zhsro(:,:)+gdepw(:,:,2,Kmm)) &
& / zhsro(:,:) )**(1.5_wp*ra_sf) )**(2._wp/3._wp) , rn_emin )
zd_lw(:,:,2) = 0._wp
zd_up(:,:,2) = 0._wp
zdiag(:,:,2) = 1._wp
!
!
CASE ( 1 ) ! Neumann boundary condition (set d(e)/dz)
!
! Dirichlet conditions at k=1
en (:,:,1) = MAX( rc02r * ustar2_surf(:,:) * (1._wp + rsbc_tke1)**r2_3 , rn_emin )
zd_lw(:,:,1) = en(:,:,1)
zd_up(:,:,1) = 0._wp
zdiag(:,:,1) = 1._wp
!
! at k=2, set de/dz=Fw
!cbr
zdiag(:,:,2) = zdiag(:,:,2) + zd_lw(:,:,2) ! Remove zd_lw from zdiag
zd_lw(:,:,2) = 0._wp
zkar (:,:) = (rl_sf + (vkarmn-rl_sf)*(1.-EXP(-rtrans*gdept(:,:,1,Kmm)/zhsro(:,:)) ))
zflxs(:,:) = rsbc_tke2 * ustar2_surf(:,:)**1.5_wp * zkar(:,:) &
& * ( ( zhsro(:,:)+gdept(:,:,1,Kmm) ) / zhsro(:,:) )**(1.5_wp*ra_sf)
!!gm why not : * ( 1._wp + gdept(:,:,1,Kmm) / zhsro(:,:) )**(1.5_wp*ra_sf)
en(:,:,2) = en(:,:,2) + zflxs(:,:) / e3w(:,:,2,Kmm)
!
!
END SELECT
! Bottom boundary condition on tke
! --------------------------------
!
SELECT CASE ( nn_bc_bot )
!
CASE ( 0 ) ! Dirichlet
! ! en(ibot) = u*^2 / Co2 and hmxl_n(ibot) = rn_lmin
! ! Balance between the production and the dissipation terms
DO_2D_00_00
!!gm This means that bottom and ocean w-level above have a specified "en" value. Sure ????
!! With thick deep ocean level thickness, this may be quite large, no ???
!! in particular in ocean cavities where top stratification can be large...
ibot = mbkt(ji,jj) + 1 ! k bottom level of w-point
ibotm1 = mbkt(ji,jj) ! k-1 bottom level of w-point but >=1
!
z_en = MAX( rc02r * ustar2_bot(ji,jj), rn_emin )
!
! Dirichlet condition applied at:
! Bottom level (ibot) & Just above it (ibotm1)
zd_lw(ji,jj,ibot) = 0._wp ; zd_lw(ji,jj,ibotm1) = 0._wp
zd_up(ji,jj,ibot) = 0._wp ; zd_up(ji,jj,ibotm1) = 0._wp
zdiag(ji,jj,ibot) = 1._wp ; zdiag(ji,jj,ibotm1) = 1._wp
en (ji,jj,ibot) = z_en ; en (ji,jj,ibotm1) = z_en
END_2D
!
IF( ln_isfcav) THEN ! top boundary (ocean cavity)
DO_2D_00_00
itop = mikt(ji,jj) ! k top w-point
itopp1 = mikt(ji,jj) + 1 ! k+1 1st w-point below the top one
! ! mask at the ocean surface points
z_en = MAX( rc02r * ustar2_top(ji,jj), rn_emin ) * ( 1._wp - tmask(ji,jj,1) )
!
!!gm TO BE VERIFIED !!!
! Dirichlet condition applied at:
! top level (itop) & Just below it (itopp1)
zd_lw(ji,jj,itop) = 0._wp ; zd_lw(ji,jj,itopp1) = 0._wp
zd_up(ji,jj,itop) = 0._wp ; zd_up(ji,jj,itopp1) = 0._wp
zdiag(ji,jj,itop) = 1._wp ; zdiag(ji,jj,itopp1) = 1._wp
en (ji,jj,itop) = z_en ; en (ji,jj,itopp1) = z_en
END_2D
ENDIF
!
CASE ( 1 ) ! Neumman boundary condition
!
DO_2D_00_00
ibot = mbkt(ji,jj) + 1 ! k bottom level of w-point
ibotm1 = mbkt(ji,jj) ! k-1 bottom level of w-point but >=1
!
z_en = MAX( rc02r * ustar2_bot(ji,jj), rn_emin )
!
! Bottom level Dirichlet condition:
! Bottom level (ibot) & Just above it (ibotm1)
! Dirichlet ! Neumann
zd_lw(ji,jj,ibot) = 0._wp ! ! Remove zd_up from zdiag
zdiag(ji,jj,ibot) = 1._wp ; zdiag(ji,jj,ibotm1) = zdiag(ji,jj,ibotm1) + zd_up(ji,jj,ibotm1)
zd_up(ji,jj,ibot) = 0._wp ; zd_up(ji,jj,ibotm1) = 0._wp
END_2D
IF( ln_isfcav) THEN ! top boundary (ocean cavity)
DO_2D_00_00
itop = mikt(ji,jj) ! k top w-point
itopp1 = mikt(ji,jj) + 1 ! k+1 1st w-point below the top one
! ! mask at the ocean surface points
z_en = MAX( rc02r * ustar2_top(ji,jj), rn_emin ) * ( 1._wp - tmask(ji,jj,1) )
!
! Bottom level Dirichlet condition:
! Bottom level (ibot) & Just above it (ibotm1)
! Dirichlet ! Neumann
zd_lw(ji,jj,itop) = 0._wp ! ! Remove zd_up from zdiag
zdiag(ji,jj,itop) = 1._wp ; zdiag(ji,jj,itopp1) = zdiag(ji,jj,itopp1) + zd_up(ji,jj,itopp1)
zd_up(ji,jj,itop) = 0._wp ; zd_up(ji,jj,itopp1) = 0._wp
END_2D
ENDIF
!
END SELECT
! Matrix inversion (en prescribed at surface and the bottom)
! ----------------------------------------------------------
!
DO_3D_00_00( 2, jpkm1 )
zdiag(ji,jj,jk) = zdiag(ji,jj,jk) - zd_lw(ji,jj,jk) * zd_up(ji,jj,jk-1) / zdiag(ji,jj,jk-1)
END_3D
DO_3D_00_00( 2, jpk )
zd_lw(ji,jj,jk) = en(ji,jj,jk) - zd_lw(ji,jj,jk) / zdiag(ji,jj,jk-1) * zd_lw(ji,jj,jk-1)
END_3D
DO_3DS_00_00( jpk-1, 2, -1 )
en(ji,jj,jk) = ( zd_lw(ji,jj,jk) - zd_up(ji,jj,jk) * en(ji,jj,jk+1) ) / zdiag(ji,jj,jk)
END_3D
! ! set the minimum value of tke
en(:,:,:) = MAX( en(:,:,:), rn_emin )
!!----------------------------------------!!
!! Solve prognostic equation for psi !!
!!----------------------------------------!!
! Set psi to previous time step value
!
SELECT CASE ( nn_clos )
!
CASE( 0 ) ! k-kl (Mellor-Yamada)
DO_3D_00_00( 2, jpkm1 )
psi(ji,jj,jk) = eb(ji,jj,jk) * hmxl_b(ji,jj,jk)
END_3D
!
CASE( 1 ) ! k-eps
DO_3D_00_00( 2, jpkm1 )
psi(ji,jj,jk) = eps(ji,jj,jk)
END_3D
!
CASE( 2 ) ! k-w
DO_3D_00_00( 2, jpkm1 )
psi(ji,jj,jk) = SQRT( eb(ji,jj,jk) ) / ( rc0 * hmxl_b(ji,jj,jk) )
END_3D
!
CASE( 3 ) ! generic
DO_3D_00_00( 2, jpkm1 )
psi(ji,jj,jk) = rc02 * eb(ji,jj,jk) * hmxl_b(ji,jj,jk)**rnn
END_3D
!
END SELECT
!
! Now gls (output in psi)
! -------------------------------
! Resolution of a tridiagonal linear system by a "methode de chasse"
! computation from level 2 to jpkm1 (e(1) already computed and e(jpk)=0 ).
! zdiag : diagonal zd_up : upper diagonal zd_lw : lower diagonal
! Warning : after this step, en : right hand side of the matrix
DO_3D_00_00( 2, jpkm1 )
!
! psi / k
zratio = psi(ji,jj,jk) / eb(ji,jj,jk)
!
! psi3+ : stable : B=-KhN²<0 => N²>0 if rn2>0 zdir = 1 (stable) otherwise zdir = 0 (unstable)
zdir = 0.5_wp + SIGN( 0.5_wp, rn2(ji,jj,jk) )
!
rpsi3 = zdir * rpsi3m + ( 1._wp - zdir ) * rpsi3p
!
! shear prod. - stratif. destruction
prod = rpsi1 * zratio * p_sh2(ji,jj,jk)
!
! stratif. destruction
buoy = rpsi3 * zratio * (- p_avt(ji,jj,jk) * rn2(ji,jj,jk) )
!
! shear prod. - stratif. destruction
diss = rpsi2 * zratio * zwall(ji,jj,jk) * eps(ji,jj,jk)
!
zdir = 0.5_wp + SIGN( 0.5_wp, prod + buoy ) ! zdir =1(=0) if shear(ji,jj,jk)+buoy >0(<0)
!
zesh2 = zdir * ( prod + buoy ) + (1._wp - zdir ) * prod ! production term
zdiss = zdir * ( diss / psi(ji,jj,jk) ) + (1._wp - zdir ) * (diss-buoy) / psi(ji,jj,jk) ! dissipation term
!
! building the matrix
zcof = rfact_psi * zwall_psi(ji,jj,jk) * tmask(ji,jj,jk)
! ! lower diagonal
zd_lw(ji,jj,jk) = zcof * ( p_avm(ji,jj,jk ) + p_avm(ji,jj,jk-1) ) / ( e3t(ji,jj,jk-1,Kmm) * e3w(ji,jj,jk,Kmm) )
! ! upper diagonal
zd_up(ji,jj,jk) = zcof * ( p_avm(ji,jj,jk+1) + p_avm(ji,jj,jk ) ) / ( e3t(ji,jj,jk ,Kmm) * e3w(ji,jj,jk,Kmm) )
! ! diagonal
zdiag(ji,jj,jk) = 1._wp - zd_lw(ji,jj,jk) - zd_up(ji,jj,jk) + rn_Dt * zdiss * wmask(ji,jj,jk)
! ! right hand side in psi
psi(ji,jj,jk) = psi(ji,jj,jk) + rn_Dt * zesh2 * wmask(ji,jj,jk)
END_3D
!
zdiag(:,:,jpk) = 1._wp
! Surface boundary condition on psi
! ---------------------------------
!
SELECT CASE ( nn_bc_surf )
!
CASE ( 0 ) ! Dirichlet boundary conditions
!
! Surface value
zdep (:,:) = zhsro(:,:) * rl_sf ! Cosmetic
psi (:,:,1) = rc0**rpp * en(:,:,1)**rmm * zdep(:,:)**rnn * tmask(:,:,1)
zd_lw(:,:,1) = psi(:,:,1)
zd_up(:,:,1) = 0._wp
zdiag(:,:,1) = 1._wp
!
! One level below
zkar (:,:) = (rl_sf + (vkarmn-rl_sf)*(1._wp-EXP(-rtrans*gdepw(:,:,2,Kmm)/zhsro(:,:) )))
zdep (:,:) = (zhsro(:,:) + gdepw(:,:,2,Kmm)) * zkar(:,:)
psi (:,:,2) = rc0**rpp * en(:,:,2)**rmm * zdep(:,:)**rnn * tmask(:,:,1)
zd_lw(:,:,2) = 0._wp
zd_up(:,:,2) = 0._wp
zdiag(:,:,2) = 1._wp
!
CASE ( 1 ) ! Neumann boundary condition on d(psi)/dz
!
! Surface value: Dirichlet
zdep (:,:) = zhsro(:,:) * rl_sf
psi (:,:,1) = rc0**rpp * en(:,:,1)**rmm * zdep(:,:)**rnn * tmask(:,:,1)
zd_lw(:,:,1) = psi(:,:,1)
zd_up(:,:,1) = 0._wp
zdiag(:,:,1) = 1._wp
!
! Neumann condition at k=2
zdiag(:,:,2) = zdiag(:,:,2) + zd_lw(:,:,2) ! Remove zd_lw from zdiag
zd_lw(:,:,2) = 0._wp
!
! Set psi vertical flux at the surface:
zkar (:,:) = rl_sf + (vkarmn-rl_sf)*(1._wp-EXP(-rtrans*gdept(:,:,1,Kmm)/zhsro(:,:) )) ! Lengh scale slope
zdep (:,:) = ((zhsro(:,:) + gdept(:,:,1,Kmm)) / zhsro(:,:))**(rmm*ra_sf)
zflxs(:,:) = (rnn + rsbc_tke1 * (rnn + rmm*ra_sf) * zdep(:,:))*(1._wp + rsbc_tke1*zdep(:,:))**(2._wp*rmm/3._wp-1_wp)
zdep (:,:) = rsbc_psi1 * (zwall_psi(:,:,1)*p_avm(:,:,1)+zwall_psi(:,:,2)*p_avm(:,:,2)) * &
& ustar2_surf(:,:)**rmm * zkar(:,:)**rnn * (zhsro(:,:) + gdept(:,:,1,Kmm))**(rnn-1.)
zflxs(:,:) = zdep(:,:) * zflxs(:,:)
psi (:,:,2) = psi(:,:,2) + zflxs(:,:) / e3w(:,:,2,Kmm)
!
END SELECT
! Bottom boundary condition on psi
! --------------------------------
!
!!gm should be done for ISF (top boundary cond.)
!!gm so, totally new staff needed ===>>> think about that !
!
SELECT CASE ( nn_bc_bot ) ! bottom boundary
!
CASE ( 0 ) ! Dirichlet
! ! en(ibot) = u*^2 / Co2 and hmxl_n(ibot) = vkarmn * r_z0_bot
! ! Balance between the production and the dissipation terms
DO_2D_00_00
ibot = mbkt(ji,jj) + 1 ! k bottom level of w-point
ibotm1 = mbkt(ji,jj) ! k-1 bottom level of w-point but >=1
zdep(ji,jj) = vkarmn * r_z0_bot
psi (ji,jj,ibot) = rc0**rpp * en(ji,jj,ibot)**rmm * zdep(ji,jj)**rnn
zd_lw(ji,jj,ibot) = 0._wp
zd_up(ji,jj,ibot) = 0._wp
zdiag(ji,jj,ibot) = 1._wp
!
! Just above last level, Dirichlet condition again (GOTM like)
zdep(ji,jj) = vkarmn * ( r_z0_bot + e3t(ji,jj,ibotm1,Kmm) )
psi (ji,jj,ibotm1) = rc0**rpp * en(ji,jj,ibot )**rmm * zdep(ji,jj)**rnn
zd_lw(ji,jj,ibotm1) = 0._wp
zd_up(ji,jj,ibotm1) = 0._wp
zdiag(ji,jj,ibotm1) = 1._wp
END_2D
!
CASE ( 1 ) ! Neumman boundary condition
!
DO_2D_00_00
ibot = mbkt(ji,jj) + 1 ! k bottom level of w-point
ibotm1 = mbkt(ji,jj) ! k-1 bottom level of w-point but >=1
!
! Bottom level Dirichlet condition:
zdep(ji,jj) = vkarmn * r_z0_bot
psi (ji,jj,ibot) = rc0**rpp * en(ji,jj,ibot)**rmm * zdep(ji,jj)**rnn
!
zd_lw(ji,jj,ibot) = 0._wp
zd_up(ji,jj,ibot) = 0._wp
zdiag(ji,jj,ibot) = 1._wp
!
! Just above last level: Neumann condition with flux injection
zdiag(ji,jj,ibotm1) = zdiag(ji,jj,ibotm1) + zd_up(ji,jj,ibotm1) ! Remove zd_up from zdiag
zd_up(ji,jj,ibotm1) = 0.
!
! Set psi vertical flux at the bottom:
zdep(ji,jj) = r_z0_bot + 0.5_wp*e3t(ji,jj,ibotm1,Kmm)
zflxb = rsbc_psi2 * ( p_avm(ji,jj,ibot) + p_avm(ji,jj,ibotm1) ) &
& * (0.5_wp*(en(ji,jj,ibot)+en(ji,jj,ibotm1)))**rmm * zdep(ji,jj)**(rnn-1._wp)
psi(ji,jj,ibotm1) = psi(ji,jj,ibotm1) + zflxb / e3w(ji,jj,ibotm1,Kmm)
END_2D
!
END SELECT
! Matrix inversion
! ----------------
!
DO_3D_00_00( 2, jpkm1 )
zdiag(ji,jj,jk) = zdiag(ji,jj,jk) - zd_lw(ji,jj,jk) * zd_up(ji,jj,jk-1) / zdiag(ji,jj,jk-1)
END_3D
DO_3D_00_00( 2, jpk )
zd_lw(ji,jj,jk) = psi(ji,jj,jk) - zd_lw(ji,jj,jk) / zdiag(ji,jj,jk-1) * zd_lw(ji,jj,jk-1)
END_3D
DO_3DS_00_00( jpk-1, 2, -1 )
psi(ji,jj,jk) = ( zd_lw(ji,jj,jk) - zd_up(ji,jj,jk) * psi(ji,jj,jk+1) ) / zdiag(ji,jj,jk)
END_3D
! Set dissipation
!----------------
SELECT CASE ( nn_clos )
!
CASE( 0 ) ! k-kl (Mellor-Yamada)
DO_3D_00_00( 1, jpkm1 )
eps(ji,jj,jk) = rc03 * en(ji,jj,jk) * en(ji,jj,jk) * SQRT( en(ji,jj,jk) ) / MAX( psi(ji,jj,jk), rn_epsmin)
END_3D
!
CASE( 1 ) ! k-eps
DO_3D_00_00( 1, jpkm1 )
eps(ji,jj,jk) = psi(ji,jj,jk)
END_3D
!
CASE( 2 ) ! k-w
DO_3D_00_00( 1, jpkm1 )
eps(ji,jj,jk) = rc04 * en(ji,jj,jk) * psi(ji,jj,jk)
END_3D
!
CASE( 3 ) ! generic
zcoef = rc0**( 3._wp + rpp/rnn )
zex1 = ( 1.5_wp + rmm/rnn )
zex2 = -1._wp / rnn
DO_3D_00_00( 1, jpkm1 )
eps(ji,jj,jk) = zcoef * en(ji,jj,jk)**zex1 * psi(ji,jj,jk)**zex2
END_3D
!
END SELECT
! Limit dissipation rate under stable stratification
! --------------------------------------------------
DO_3D_00_00( 1, jpkm1 )
! limitation
eps (ji,jj,jk) = MAX( eps(ji,jj,jk), rn_epsmin )
hmxl_n(ji,jj,jk) = rc03 * en(ji,jj,jk) * SQRT( en(ji,jj,jk) ) / eps(ji,jj,jk)
! Galperin criterium (NOTE : Not required if the proper value of C3 in stable cases is calculated)
zrn2 = MAX( rn2(ji,jj,jk), rsmall )
IF( ln_length_lim ) hmxl_n(ji,jj,jk) = MIN( rn_clim_galp * SQRT( 2._wp * en(ji,jj,jk) / zrn2 ), hmxl_n(ji,jj,jk) )
END_3D
!
! Stability function and vertical viscosity and diffusivity
! ---------------------------------------------------------
!
SELECT CASE ( nn_stab_func )
!
CASE ( 0 , 1 ) ! Galperin or Kantha-Clayson stability functions
DO_3D_00_00( 2, jpkm1 )
! zcof = l²/q²
zcof = hmxl_b(ji,jj,jk) * hmxl_b(ji,jj,jk) / ( 2._wp*eb(ji,jj,jk) )
! Gh = -N²l²/q²
gh = - rn2(ji,jj,jk) * zcof
gh = MIN( gh, rgh0 )
gh = MAX( gh, rghmin )
! Stability functions from Kantha and Clayson (if C2=C3=0 => Galperin)
sh = ra2*( 1._wp-6._wp*ra1/rb1 ) / ( 1.-3.*ra2*gh*(6.*ra1+rb2*( 1._wp-rc3 ) ) )
sm = ( rb1**(-1._wp/3._wp) + ( 18._wp*ra1*ra1 + 9._wp*ra1*ra2*(1._wp-rc2) )*sh*gh ) / (1._wp-9._wp*ra1*ra2*gh)
!
! Store stability function in zstt and zstm
zstt(ji,jj,jk) = rc_diff * sh * tmask(ji,jj,jk)
zstm(ji,jj,jk) = rc_diff * sm * tmask(ji,jj,jk)
END_3D
!
CASE ( 2, 3 ) ! Canuto stability functions
DO_3D_00_00( 2, jpkm1 )
! zcof = l²/q²
zcof = hmxl_b(ji,jj,jk)*hmxl_b(ji,jj,jk) / ( 2._wp * eb(ji,jj,jk) )
! Gh = -N²l²/q²
gh = - rn2(ji,jj,jk) * zcof
gh = MIN( gh, rgh0 )
gh = MAX( gh, rghmin )
gh = gh * rf6
! Gm = M²l²/q² Shear number
shr = p_sh2(ji,jj,jk) / MAX( p_avm(ji,jj,jk), rsmall )
gm = MAX( shr * zcof , 1.e-10 )
gm = gm * rf6
gm = MIN ( (rd0 - rd1*gh + rd3*gh*gh) / (rd2-rd4*gh) , gm )
! Stability functions from Canuto
rcff = rd0 - rd1*gh +rd2*gm + rd3*gh*gh - rd4*gh*gm + rd5*gm*gm
sm = (rs0 - rs1*gh + rs2*gm) / rcff
sh = (rs4 - rs5*gh + rs6*gm) / rcff
!
! Store stability function in zstt and zstm
zstt(ji,jj,jk) = rc_diff * sh * tmask(ji,jj,jk)
zstm(ji,jj,jk) = rc_diff * sm * tmask(ji,jj,jk)
END_3D
!
END SELECT
! Boundary conditions on stability functions for momentum (Neumann):
! Lines below are useless if GOTM style Dirichlet conditions are used
zstm(:,:,1) = zstm(:,:,2)
! default value, in case jpk > mbkt(ji,jj)+1. Not needed but avoid a bug when looking for undefined values (-fpe0)
zstm(:,:,jpk) = 0.
DO_2D_00_00
zstm(ji,jj,mbkt(ji,jj)+1) = zstm(ji,jj,mbkt(ji,jj))
END_2D
zstt(:,:, 1) = wmask(:,:, 1) ! default value not needed but avoid a bug when looking for undefined values (-fpe0)
zstt(:,:,jpk) = wmask(:,:,jpk) ! default value not needed but avoid a bug when looking for undefined values (-fpe0)
!!gm should be done for ISF (top boundary cond.)
!!gm so, totally new staff needed!!gm
! Compute diffusivities/viscosities
! The computation below could be restrained to jk=2 to jpkm1 if GOTM style Dirichlet conditions are used
! -> yes BUT p_avm(:,:1) and p_avm(:,:jpk) are used when we compute zd_lw(:,:2) and zd_up(:,:jpkm1). These values are
! later overwritten by surface/bottom boundaries conditions, so we don't really care of p_avm(:,:1) and p_avm(:,:jpk)
! for zd_lw and zd_up but they have to be defined to avoid a bug when looking for undefined values (-fpe0)
DO_3D_00_00( 1, jpk )
zsqen = SQRT( 2._wp * en(ji,jj,jk) ) * hmxl_n(ji,jj,jk)
zavt = zsqen * zstt(ji,jj,jk)
zavm = zsqen * zstm(ji,jj,jk)
p_avt(ji,jj,jk) = MAX( zavt, avtb(jk) ) * wmask(ji,jj,jk) ! apply mask for zdfmxl routine
p_avm(ji,jj,jk) = MAX( zavm, avmb(jk) ) ! Note that avm is not masked at the surface and the bottom
END_3D
p_avt(:,:,1) = 0._wp
!
IF(sn_cfctl%l_prtctl) THEN
CALL prt_ctl( tab3d_1=en , clinfo1=' gls - e: ', tab3d_2=p_avt, clinfo2=' t: ', kdim=jpk)
CALL prt_ctl( tab3d_1=p_avm, clinfo1=' gls - m: ', kdim=jpk )
ENDIF
!
END SUBROUTINE zdf_gls
SUBROUTINE zdf_gls_init
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_gls_init ***
!!
!! ** Purpose : Initialization of the vertical eddy diffivity and
!! viscosity computed using a GLS turbulent closure scheme
!!
!! ** Method : Read the namzdf_gls namelist and check the parameters
!!
!! ** input : Namlist namzdf_gls
!!
!! ** Action : Increase by 1 the nstop flag is setting problem encounter
!!
!!----------------------------------------------------------------------
INTEGER :: jk ! dummy loop indices
INTEGER :: ios ! Local integer output status for namelist read
REAL(wp):: zcr ! local scalar
!!
NAMELIST/namzdf_gls/rn_emin, rn_epsmin, ln_length_lim, &
& rn_clim_galp, ln_sigpsi, rn_hsro, rn_hsro_i, &
& rn_crban, rn_charn, rn_frac_hs, &
& nn_bc_surf, nn_bc_bot, nn_z0_met, nn_z0_met_i &
& nn_stab_func, nn_clos
!!----------------------------------------------------------
!
READ ( numnam_ref, namzdf_gls, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_gls in reference namelist' )
READ ( numnam_cfg, namzdf_gls, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namzdf_gls in configuration namelist' )
IF(lwm) WRITE ( numond, namzdf_gls )
IF(lwp) THEN !* Control print
WRITE(numout,*)
WRITE(numout,*) 'zdf_gls_init : GLS turbulent closure scheme'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namzdf_gls : set gls mixing parameters'
WRITE(numout,*) ' minimum value of en rn_emin = ', rn_emin
WRITE(numout,*) ' minimum value of eps rn_epsmin = ', rn_epsmin
WRITE(numout,*) ' Limit dissipation rate under stable stratif. ln_length_lim = ', ln_length_lim
WRITE(numout,*) ' Galperin limit (Standard: 0.53, Holt: 0.26) rn_clim_galp = ', rn_clim_galp
WRITE(numout,*) ' TKE Surface boundary condition nn_bc_surf = ', nn_bc_surf
WRITE(numout,*) ' TKE Bottom boundary condition nn_bc_bot = ', nn_bc_bot
WRITE(numout,*) ' Modify psi Schmidt number (wb case) ln_sigpsi = ', ln_sigpsi
WRITE(numout,*) ' Craig and Banner coefficient rn_crban = ', rn_crban
WRITE(numout,*) ' Charnock coefficient rn_charn = ', rn_charn
WRITE(numout,*) ' Surface roughness formula nn_z0_met = ', nn_z0_met
WRITE(numout,*) ' Wave height frac. (used if nn_z0_met=2) rn_frac_hs = ', rn_frac_hs
WRITE(numout,*) ' Stability functions nn_stab_func = ', nn_stab_func
WRITE(numout,*) ' Type of closure nn_clos = ', nn_clos
WRITE(numout,*) ' Surface roughness (m) rn_hsro = ', rn_hsro
WRITE(numout,*)
WRITE(numout,*) ' Namelist namdrg_top/_bot: used values:'
WRITE(numout,*) ' top ocean cavity roughness (m) rn_z0(_top) = ', r_z0_top
WRITE(numout,*) ' Bottom seafloor roughness (m) rn_z0(_bot) = ', r_z0_bot
WRITE(numout,*)
ENDIF
! !* allocate GLS arrays
IF( zdf_gls_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_gls_init : unable to allocate arrays' )
! !* Check of some namelist values
IF( nn_bc_surf < 0 .OR. nn_bc_surf > 1 ) CALL ctl_stop( 'zdf_gls_init: bad flag: nn_bc_surf is 0 or 1' )
IF( nn_bc_surf < 0 .OR. nn_bc_surf > 1 ) CALL ctl_stop( 'zdf_gls_init: bad flag: nn_bc_surf is 0 or 1' )
IF( nn_z0_met < 0 .OR. nn_z0_met > 3 ) CALL ctl_stop( 'zdf_gls_init: bad flag: nn_z0_met is 0, 1, 2 or 3' )
IF( nn_z0_met == 3 .AND. .NOT.ln_wave ) CALL ctl_stop( 'zdf_gls_init: nn_z0_met=3 requires ln_wave=T' )
IF( nn_stab_func < 0 .OR. nn_stab_func > 3 ) CALL ctl_stop( 'zdf_gls_init: bad flag: nn_stab_func is 0, 1, 2 and 3' )
IF( nn_clos < 0 .OR. nn_clos > 3 ) CALL ctl_stop( 'zdf_gls_init: bad flag: nn_clos is 0, 1, 2 or 3' )
SELECT CASE ( nn_clos ) !* set the parameters for the chosen closure
!
CASE( 0 ) ! k-kl (Mellor-Yamada)
!
IF(lwp) WRITE(numout,*) ' ==>> k-kl closure chosen (i.e. closed to the classical Mellor-Yamada)'
IF(lwp) WRITE(numout,*)
rpp = 0._wp
rmm = 1._wp
rnn = 1._wp
rsc_tke = 1.96_wp
rsc_psi = 1.96_wp
rpsi1 = 0.9_wp
rpsi3p = 1._wp
rpsi2 = 0.5_wp
!
SELECT CASE ( nn_stab_func )
CASE( 0, 1 ) ; rpsi3m = 2.53_wp ! G88 or KC stability functions
CASE( 2 ) ; rpsi3m = 2.62_wp ! Canuto A stability functions
CASE( 3 ) ; rpsi3m = 2.38 ! Canuto B stability functions (caution : constant not identified)
END SELECT
!
CASE( 1 ) ! k-eps
!
IF(lwp) WRITE(numout,*) ' ==>> k-eps closure chosen'
IF(lwp) WRITE(numout,*)
rpp = 3._wp
rmm = 1.5_wp
rnn = -1._wp
rsc_tke = 1._wp
rsc_psi = 1.2_wp ! Schmidt number for psi
rpsi1 = 1.44_wp
rpsi3p = 1._wp
rpsi2 = 1.92_wp
!
SELECT CASE ( nn_stab_func )
CASE( 0, 1 ) ; rpsi3m = -0.52_wp ! G88 or KC stability functions
CASE( 2 ) ; rpsi3m = -0.629_wp ! Canuto A stability functions
CASE( 3 ) ; rpsi3m = -0.566 ! Canuto B stability functions
END SELECT
!
CASE( 2 ) ! k-omega
!
IF(lwp) WRITE(numout,*) ' ==>> k-omega closure chosen'
IF(lwp) WRITE(numout,*)
rpp = -1._wp
rmm = 0.5_wp
rnn = -1._wp
rsc_tke = 2._wp
rsc_psi = 2._wp
rpsi1 = 0.555_wp
rpsi3p = 1._wp
rpsi2 = 0.833_wp
!
SELECT CASE ( nn_stab_func )
CASE( 0, 1 ) ; rpsi3m = -0.58_wp ! G88 or KC stability functions
CASE( 2 ) ; rpsi3m = -0.64_wp ! Canuto A stability functions
CASE( 3 ) ; rpsi3m = -0.64_wp ! Canuto B stability functions caution : constant not identified)
END SELECT
!
CASE( 3 ) ! generic
!
IF(lwp) WRITE(numout,*) ' ==>> generic closure chosen'
IF(lwp) WRITE(numout,*)
rpp = 2._wp
rmm = 1._wp
rnn = -0.67_wp
rsc_tke = 0.8_wp
rsc_psi = 1.07_wp
rpsi1 = 1._wp
rpsi3p = 1._wp
rpsi2 = 1.22_wp
!
SELECT CASE ( nn_stab_func )
CASE( 0, 1 ) ; rpsi3m = 0.1_wp ! G88 or KC stability functions
CASE( 2 ) ; rpsi3m = 0.05_wp ! Canuto A stability functions
CASE( 3 ) ; rpsi3m = 0.05_wp ! Canuto B stability functions caution : constant not identified)
END SELECT
!
END SELECT
!
SELECT CASE ( nn_stab_func ) !* set the parameters of the stability functions
!
CASE ( 0 ) ! Galperin stability functions
!
IF(lwp) WRITE(numout,*) ' ==>> Stability functions from Galperin'
rc2 = 0._wp
rc3 = 0._wp
rc_diff = 1._wp
rc0 = 0.5544_wp
rcm_sf = 0.9884_wp
rghmin = -0.28_wp
rgh0 = 0.0233_wp
rghcri = 0.02_wp
!
CASE ( 1 ) ! Kantha-Clayson stability functions
!
IF(lwp) WRITE(numout,*) ' ==>> Stability functions from Kantha-Clayson'
rc2 = 0.7_wp
rc3 = 0.2_wp
rc_diff = 1._wp
rc0 = 0.5544_wp
rcm_sf = 0.9884_wp
rghmin = -0.28_wp
rgh0 = 0.0233_wp
rghcri = 0.02_wp
!
CASE ( 2 ) ! Canuto A stability functions
!
IF(lwp) WRITE(numout,*) ' ==>> Stability functions from Canuto A'
rs0 = 1.5_wp * rl1 * rl5*rl5
rs1 = -rl4*(rl6+rl7) + 2._wp*rl4*rl5*(rl1-(1._wp/3._wp)*rl2-rl3) + 1.5_wp*rl1*rl5*rl8
rs2 = -(3._wp/8._wp) * rl1*(rl6*rl6-rl7*rl7)
rs4 = 2._wp * rl5
rs5 = 2._wp * rl4
rs6 = (2._wp/3._wp) * rl5 * ( 3._wp*rl3*rl3 - rl2*rl2 ) - 0.5_wp * rl5*rl1 * (3._wp*rl3-rl2) &
& + 0.75_wp * rl1 * ( rl6 - rl7 )
rd0 = 3._wp * rl5*rl5
rd1 = rl5 * ( 7._wp*rl4 + 3._wp*rl8 )
rd2 = rl5*rl5 * ( 3._wp*rl3*rl3 - rl2*rl2 ) - 0.75_wp*(rl6*rl6 - rl7*rl7 )
rd3 = rl4 * ( 4._wp*rl4 + 3._wp*rl8)
rd4 = rl4 * ( rl2 * rl6 - 3._wp*rl3*rl7 - rl5*(rl2*rl2 - rl3*rl3 ) ) + rl5*rl8 * ( 3._wp*rl3*rl3 - rl2*rl2 )
rd5 = 0.25_wp * ( rl2*rl2 - 3._wp *rl3*rl3 ) * ( rl6*rl6 - rl7*rl7 )
rc0 = 0.5268_wp
rf6 = 8._wp / (rc0**6._wp)
rc_diff = SQRT(2._wp) / (rc0**3._wp)
rcm_sf = 0.7310_wp
rghmin = -0.28_wp
rgh0 = 0.0329_wp
rghcri = 0.03_wp
!
CASE ( 3 ) ! Canuto B stability functions
!
IF(lwp) WRITE(numout,*) ' ==>> Stability functions from Canuto B'
rs0 = 1.5_wp * rm1 * rm5*rm5
rs1 = -rm4 * (rm6+rm7) + 2._wp * rm4*rm5*(rm1-(1._wp/3._wp)*rm2-rm3) + 1.5_wp * rm1*rm5*rm8
rs2 = -(3._wp/8._wp) * rm1 * (rm6*rm6-rm7*rm7 )
rs4 = 2._wp * rm5
rs5 = 2._wp * rm4
rs6 = (2._wp/3._wp) * rm5 * (3._wp*rm3*rm3-rm2*rm2) - 0.5_wp * rm5*rm1*(3._wp*rm3-rm2) + 0.75_wp * rm1*(rm6-rm7)
rd0 = 3._wp * rm5*rm5
rd1 = rm5 * (7._wp*rm4 + 3._wp*rm8)
rd2 = rm5*rm5 * (3._wp*rm3*rm3 - rm2*rm2) - 0.75_wp * (rm6*rm6 - rm7*rm7)
rd3 = rm4 * ( 4._wp*rm4 + 3._wp*rm8 )
rd4 = rm4 * ( rm2*rm6 -3._wp*rm3*rm7 - rm5*(rm2*rm2 - rm3*rm3) ) + rm5 * rm8 * ( 3._wp*rm3*rm3 - rm2*rm2 )
rd5 = 0.25_wp * ( rm2*rm2 - 3._wp*rm3*rm3 ) * ( rm6*rm6 - rm7*rm7 )
rc0 = 0.5268_wp !! rc0 = 0.5540_wp (Warner ...) to verify !
rf6 = 8._wp / ( rc0**6._wp )
rc_diff = SQRT(2._wp)/(rc0**3.)
rcm_sf = 0.7470_wp
rghmin = -0.28_wp
rgh0 = 0.0444_wp
rghcri = 0.0414_wp
!
END SELECT
! !* Set Schmidt number for psi diffusion in the wave breaking case
! ! See Eq. (13) of Carniel et al, OM, 30, 225-239, 2009
! ! or Eq. (17) of Burchard, JPO, 31, 3133-3145, 2001
IF( ln_sigpsi ) THEN
ra_sf = -1.5 ! Set kinetic energy slope, then deduce rsc_psi and rl_sf
! Verification: retrieve Burchard (2001) results by uncomenting the line below:
! Note that the results depend on the value of rn_cm_sf which is constant (=rc0) in his work
! ra_sf = -SQRT(2./3.*rc0**3./rn_cm_sf*rn_sc_tke)/vkarmn
rsc_psi0 = rsc_tke/(24.*rpsi2)*(-1.+(4.*rnn + ra_sf*(1.+4.*rmm))**2./(ra_sf**2.))
ELSE
rsc_psi0 = rsc_psi
ENDIF
! !* Shear free turbulence parameters
!
ra_sf = -4._wp*rnn*SQRT(rsc_tke) / ( (1._wp+4._wp*rmm)*SQRT(rsc_tke) &
& - SQRT(rsc_tke + 24._wp*rsc_psi0*rpsi2 ) )
IF ( rn_crban==0._wp ) THEN
rl_sf = vkarmn
ELSE
rl_sf = rc0 * SQRT(rc0/rcm_sf) * SQRT( ( (1._wp + 4._wp*rmm + 8._wp*rmm**2_wp) * rsc_tke &
& + 12._wp*rsc_psi0*rpsi2 - (1._wp + 4._wp*rmm) &
& *SQRT(rsc_tke*(rsc_tke &
& + 24._wp*rsc_psi0*rpsi2)) ) &
& /(12._wp*rnn**2.) )
ENDIF
!
IF(lwp) THEN !* Control print
WRITE(numout,*)
WRITE(numout,*) ' Limit values :'
WRITE(numout,*) ' Parameter m = ', rmm
WRITE(numout,*) ' Parameter n = ', rnn
WRITE(numout,*) ' Parameter p = ', rpp
WRITE(numout,*) ' rpsi1 = ', rpsi1
WRITE(numout,*) ' rpsi2 = ', rpsi2
WRITE(numout,*) ' rpsi3m = ', rpsi3m
WRITE(numout,*) ' rpsi3p = ', rpsi3p
WRITE(numout,*) ' rsc_tke = ', rsc_tke
WRITE(numout,*) ' rsc_psi = ', rsc_psi
WRITE(numout,*) ' rsc_psi0 = ', rsc_psi0
WRITE(numout,*) ' rc0 = ', rc0
WRITE(numout,*)
WRITE(numout,*) ' Shear free turbulence parameters:'
WRITE(numout,*) ' rcm_sf = ', rcm_sf
WRITE(numout,*) ' ra_sf = ', ra_sf
WRITE(numout,*) ' rl_sf = ', rl_sf
ENDIF
! !* Constants initialization
rc02 = rc0 * rc0 ; rc02r = 1. / rc02
rc03 = rc02 * rc0
rc04 = rc03 * rc0
rsbc_tke1 = -3._wp/2._wp*rn_crban*ra_sf*rl_sf ! Dirichlet + Wave breaking
rsbc_tke2 = rn_Dt * rn_crban / rl_sf ! Neumann + Wave breaking
zcr = MAX(rsmall, rsbc_tke1**(1./(-ra_sf*3._wp/2._wp))-1._wp )
rtrans = 0.2_wp / zcr ! Ad. inverse transition length between log and wave layer
rsbc_zs1 = rn_charn/grav ! Charnock formula for surface roughness
rsbc_zs2 = rn_frac_hs / 0.85_wp / grav * 665._wp ! Rascle formula for surface roughness
rsbc_psi1 = -0.5_wp * rn_Dt * rc0**(rpp-2._wp*rmm) / rsc_psi
rsbc_psi2 = -0.5_wp * rn_Dt * rc0**rpp * rnn * vkarmn**rnn / rsc_psi ! Neumann + NO Wave breaking
!
rfact_tke = -0.5_wp / rsc_tke * rn_Dt ! Cst used for the Diffusion term of tke
rfact_psi = -0.5_wp / rsc_psi * rn_Dt ! Cst used for the Diffusion term of tke
!
! !* Wall proximity function
!!gm tmask or wmask ????
zwall(:,:,:) = 1._wp * tmask(:,:,:)
! !* read or initialize all required files
CALL gls_rst( nit000, 'READ' ) ! (en, avt_k, avm_k, hmxl_n)
!
IF( lwxios ) THEN
CALL iom_set_rstw_var_active('en')
CALL iom_set_rstw_var_active('avt_k')
CALL iom_set_rstw_var_active('avm_k')
CALL iom_set_rstw_var_active('hmxl_n')
ENDIF
!
END SUBROUTINE zdf_gls_init
SUBROUTINE gls_rst( kt, cdrw )
!!---------------------------------------------------------------------
!! *** ROUTINE gls_rst ***
!!
!! ** Purpose : Read or write TKE file (en) in restart file
!!
!! ** Method : use of IOM library
!! if the restart does not contain TKE, en is either
!! set to rn_emin or recomputed (nn_igls/=0)
!!----------------------------------------------------------------------
USE zdf_oce , ONLY : en, avt_k, avm_k ! ocean vertical physics
!!
INTEGER , INTENT(in) :: kt ! ocean time-step
CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag
!
INTEGER :: jit, jk ! dummy loop indices
INTEGER :: id1, id2, id3, id4
INTEGER :: ji, jj, ikbu, ikbv
REAL(wp):: cbx, cby
!!----------------------------------------------------------------------
!
IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise
! ! ---------------
IF( ln_rstart ) THEN !* Read the restart file
id1 = iom_varid( numror, 'en' , ldstop = .FALSE. )
id2 = iom_varid( numror, 'avt_k' , ldstop = .FALSE. )
id3 = iom_varid( numror, 'avm_k' , ldstop = .FALSE. )
id4 = iom_varid( numror, 'hmxl_n', ldstop = .FALSE. )
!
IF( MIN( id1, id2, id3, id4 ) > 0 ) THEN ! all required arrays exist
CALL iom_get( numror, jpdom_autoglo, 'en' , en , ldxios = lrxios )
CALL iom_get( numror, jpdom_autoglo, 'avt_k' , avt_k , ldxios = lrxios )
CALL iom_get( numror, jpdom_autoglo, 'avm_k' , avm_k , ldxios = lrxios )
CALL iom_get( numror, jpdom_autoglo, 'hmxl_n', hmxl_n, ldxios = lrxios )
ELSE
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' ==>> previous run without GLS scheme, set en and hmxl_n to background values'
en (:,:,:) = rn_emin
hmxl_n(:,:,:) = 0.05_wp
! avt_k, avm_k already set to the background value in zdf_phy_init
ENDIF
ELSE !* Start from rest
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' ==>> start from rest, set en and hmxl_n by background values'
en (:,:,:) = rn_emin
hmxl_n(:,:,:) = 0.05_wp
! avt_k, avm_k already set to the background value in zdf_phy_init
ENDIF
!
ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file
! ! -------------------
IF(lwp) WRITE(numout,*) '---- gls-rst ----'
IF( lwxios ) CALL iom_swap( cwxios_context )
CALL iom_rstput( kt, nitrst, numrow, 'en' , en , ldxios = lwxios )
CALL iom_rstput( kt, nitrst, numrow, 'avt_k' , avt_k , ldxios = lwxios )
CALL iom_rstput( kt, nitrst, numrow, 'avm_k' , avm_k , ldxios = lwxios )
CALL iom_rstput( kt, nitrst, numrow, 'hmxl_n', hmxl_n, ldxios = lwxios )
IF( lwxios ) CALL iom_swap( cxios_context )
!
ENDIF
!
END SUBROUTINE gls_rst
!!======================================================================
END MODULE zdfgls
It seems that two variable names need to be changed in namelist_cfg for compatability with GO8pt6.
rn_hsro_i should be rn_hsri nn_z0_met_i should be nn_z0_ice .
Runs of REF_NOTIDE with GLS (params as above) rather than TKE, both with and without EVD active, crashed after ~4 and ~1 yrs, respectively. There was relatively high abs. salinity ~34.7 in the Ross Sea (k=1), with a strong offshore lateral gradient reducing to ~34.0 at the edge of the Ross Gyre, in the former. Both runs were with an 1800s timestep. Testing again with a reduced timestep.
It would be good to try and avoid reducing timestep, as this will be expensive. but if it works, then it works!
Hi @chris-O-wilson , first thing I'd try to reduce mixing in this model is change the stability function #1 = KC94 is less diffusive (I think) so try: nn_stab_func = 1 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
In Maria's paper https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JC014307 I think advocated # 4 = K3, but this might not have reached this code version. This is an updated version of the KC94.
That paper used slightly different versions of rn_emin =1e-6 (wrong way so leave) rn_epsmin = 1.0 e-9 - worth a try And rn_hsro = 0.003 (worth a try).
So maybe try a run with but KC94 and these other two parameter tweeks
Jason
For ref:
Just had a look at my NNA_R12 namelist for SZT:
!-----------------------------------------------------------------------
&namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
!-----------------------------------------------------------------------
rn_emin = 1.e-6 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-9 ! minimum value of eps [m2/s3]
! rn_emin = 1.e-7 ! minimum value of e [m2/s2]
! rn_epsmin = 1.e-10 ! minimum value of eps [m2/s3]
! rn_emin = 1.e-6 ! minimum value of e [m2/s2]
! rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.267 ! galperin limit
ln_crban = .true. ! Use Craig & Banner (1994) surface wave mixing parametrisation
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 100000. ! Charnock constant for wb induced roughness length
! rn_charn = 70000. ! Charnock constant for wb induced roughness length
nn_tkebc_surf = 1 ! surface tke condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_tkebc_bot = 1 ! bottom tke condition (0/1=Dir/Neum)
nn_psibc_surf = 1 ! surface psi condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_psibc_bot = 1 ! bottom psi condition (0/1=Dir/Neum)
nn_stab_func = 1 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
! nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)
The one I ran for the NNA_R12 ZPS looks a little more like Maria's pan Arctic:
!-----------------------------------------------------------------------
&namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
!-----------------------------------------------------------------------
rn_emin = 1.e-6 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.26 ! galperin limit
ln_crban = .true. ! Use Craig & Banner (1994) surface wave mixing parametrisation
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
nn_tkebc_surf = 1 ! surface tke condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_tkebc_bot = 1 ! bottom tke condition (0/1=Dir/Neum)
nn_psibc_surf = 1 ! surface psi condition (0/1/2=Dir/Neum/Dir Mellor-Blumberg)
nn_psibc_bot = 1 ! bottom psi condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)
Looks like we were having very similar discussions back then as we are now!
Thanks Jason. I’ll look into it.
Chris
From: jasontempestholt @.> Date: Wednesday, 20 October 2021 at 14:46 To: NOC-MSM/SE-NEMO @.> Cc: Wilson, Chris @.>, Mention @.> Subject: Re: [NOC-MSM/SE-NEMO] Test GLS v's TKE (#21)
Caution: This email has originated from outside of the organisation. Do not click links or open attachments unless you have verified the sender and content is safe. Thank you.
Hi @chris-O-wilsonhttps://github.com/chris-O-wilson , first thing I'd try to reduce mixing in this model is change the stability function #1https://github.com/NOC-MSM/SE-NEMO/issues/1 = KC94 is less diffusive (I think) so try: nn_stab_func = 1 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
In Maria's paper https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JC014307 I think advocated # 4 = K3, but this might not have reached this code version. This is an updated version of the KC94.
That paper used slightly different versions of rn_emin =1e-6 (wrong way so leave) rn_epsmin = 1.0 e-9 - worth a try And rn_hsro = 0.003 (worth a try).
So maybe try a run with but KC94 and these other two parameter tweeks
Jason
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHubhttps://github.com/NOC-MSM/SE-NEMO/issues/21#issuecomment-947684159, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AF32LSN7EDTQPE436ER6Z6LUH3B35ANCNFSM4UDVFZSQ. Triage notifications on the go with GitHub Mobile for iOShttps://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Androidhttps://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub.
This email and any attachments are intended solely for the use of the named recipients. If you are not the intended recipient you must not use, disclose, copy or distribute this email or any of its attachments and should notify the sender immediately and delete this email from your system. The National Oceanography Centre (NOC) has taken every reasonable precaution to minimise risk of this email or any attachments containing viruses or malware but the recipient should carry out its own virus and malware checks before opening the attachments. NOC does not accept any liability for any losses or damages which the recipient may sustain due to presence of any viruses. Opinions, conclusions or other information in this message and attachments that are not related directly to NOC business are solely those of the author and do not represent the views of NOC.
Romain B-B namzdf_gls:
!----------------------------------------------------------------------- &namzdf_gls ! GLS vertical diffusion (ln_zdfgls =T) !----------------------------------------------------------------------- rn_emin = 1.e-7 ! minimum value of e [m2/s2] rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3] ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988) rn_clim_galp = 0.267 ! galperin limit ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux rn_charn = 70000. ! Charnock constant for wb induced roughness length rn_hsro = 0.02 ! Minimum surface roughness rn_hsro_i = 0.02 ! Minimum surface roughness under ice rn_frac_hs = 1.3 ! Fraction of wave height as roughness (if nn_z0_met>1) nn_z0_met = 2 ! Method for surface roughness computation (0/1/2/3) ! ! =3 requires ln_wave=T nn_z0_met_i = 3 ! Method for surface roughness computation under ice (1/2/3) nn_bc_surf = 1 ! surface condition (0/1=Dir/Neum) nn_bc_bot = 1 ! bottom condition (0/1=Dir/Neum) nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB) nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen) /