Closed bwanglzu closed 5 years ago
import matchzoo as mz
import keras
train_pack = mz.datasets.quora_qp.load_data('train', task='classification')
predict_pack = mz.datasets.quora_qp.load_data('test', task='classification')
Downloading data from https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQQP.zip?alt=media&token=700c6acf-160d-4d89-81d1-de4191d02cb5
60538880/60534884 [==============================] - 102s 2us/step
b'Skipping line 83032: expected 6 fields, saw 7\n'
b'Skipping line 154657: expected 6 fields, saw 7\n'
b'Skipping line 323916: expected 6 fields, saw 7\n'
/home/bo/.local/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3265: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.
exec(code_obj, self.user_global_ns, self.user_ns)
preprocessor = mz.preprocessors.BasicPreprocessor()
train_processed = preprocessor.fit_transform(train_pack)
predict_processed = preprocessor.transform(predict_pack)
Processing text_left with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 293839/293839 [00:39<00:00, 7374.94it/s]
Processing text_right with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 273121/273121 [00:37<00:00, 7196.97it/s]
Processing text_right with append: 100%|██████████| 273121/273121 [00:00<00:00, 1137625.53it/s]
Building FrequencyFilter from a datapack.: 100%|██████████| 273121/273121 [00:01<00:00, 202091.90it/s]
Processing text_right with transform: 100%|██████████| 273121/273121 [00:01<00:00, 227279.27it/s]
Processing text_left with extend: 100%|██████████| 293839/293839 [00:00<00:00, 1122696.41it/s]
Processing text_right with extend: 100%|██████████| 273121/273121 [00:00<00:00, 1138594.55it/s]
Building Vocabulary from a datapack.: 100%|██████████| 6284781/6284781 [00:01<00:00, 3936116.45it/s]
Processing text_left with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 293839/293839 [00:40<00:00, 7183.37it/s]
Processing text_right with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 273121/273121 [00:37<00:00, 7326.03it/s]
Processing text_right with transform: 100%|██████████| 273121/273121 [00:01<00:00, 190440.27it/s]
Processing text_left with transform: 100%|██████████| 293839/293839 [00:01<00:00, 178447.08it/s]
Processing text_right with transform: 100%|██████████| 273121/273121 [00:01<00:00, 161849.92it/s]
Processing length_left with len: 100%|██████████| 293839/293839 [00:00<00:00, 1111204.36it/s]
Processing length_right with len: 100%|██████████| 273121/273121 [00:00<00:00, 1092705.96it/s]
Processing text_left with transform: 100%|██████████| 293839/293839 [00:02<00:00, 123868.05it/s]
Processing text_right with transform: 100%|██████████| 273121/273121 [00:02<00:00, 120905.06it/s]
Processing text_left with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 290826/290826 [00:41<00:00, 6942.42it/s]
Processing text_right with chain_transform of Tokenize => Lowercase => PuncRemoval: 100%|██████████| 307165/307165 [00:46<00:00, 6642.60it/s]
Processing text_right with transform: 100%|██████████| 307165/307165 [00:01<00:00, 165919.12it/s]
Processing text_left with transform: 100%|██████████| 290826/290826 [00:02<00:00, 130320.17it/s]
Processing text_right with transform: 100%|██████████| 307165/307165 [00:01<00:00, 259078.01it/s]
Processing length_left with len: 100%|██████████| 290826/290826 [00:00<00:00, 1173532.07it/s]
Processing length_right with len: 100%|██████████| 307165/307165 [00:00<00:00, 1211420.60it/s]
Processing text_left with transform: 100%|██████████| 290826/290826 [00:02<00:00, 114361.27it/s]
Processing text_right with transform: 100%|██████████| 307165/307165 [00:02<00:00, 103237.54it/s]
classification_task = mz.tasks.Classification(num_classes=2)
model = mz.models.DUET()
model.params.update(preprocessor.context)
model.params['task'] = classification_task
model.params['embedding_output_dim'] = 300
model.params['lm_filters'] = 32
model.params['lm_hidden_sizes'] = [32]
model.params['dm_filters'] = 32
model.params['dm_kernel_size'] = 3
model.params['dm_d_mpool'] = 4
model.params['dm_hidden_sizes'] = [32]
model.params['dropout_rate'] = 0.5
optimizer = keras.optimizers.Adamax(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0)
model.params['optimizer'] = 'adagrad'
model.guess_and_fill_missing_params()
model.build()
model.compile()
model.backend.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
text_left (InputLayer) (None, 30) 0
__________________________________________________________________________________________________
text_right (InputLayer) (None, 30) 0
__________________________________________________________________________________________________
embedding (Embedding) (None, 30, 300) 19189500 text_left[0][0]
text_right[0][0]
__________________________________________________________________________________________________
conv1d_2 (Conv1D) (None, 30, 32) 28832 embedding[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 30, 32) 0 conv1d_2[0][0]
__________________________________________________________________________________________________
conv1d_3 (Conv1D) (None, 30, 32) 28832 embedding[1][0]
__________________________________________________________________________________________________
max_pooling1d_1 (MaxPooling1D) (None, 1, 32) 0 dropout_3[0][0]
__________________________________________________________________________________________________
dropout_4 (Dropout) (None, 30, 32) 0 conv1d_3[0][0]
__________________________________________________________________________________________________
reshape_2 (Reshape) (None, 32) 0 max_pooling1d_1[0][0]
__________________________________________________________________________________________________
max_pooling1d_2 (MaxPooling1D) (None, 7, 32) 0 dropout_4[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 30, 30) 0 text_left[0][0]
text_right[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 32) 1056 reshape_2[0][0]
__________________________________________________________________________________________________
conv1d_4 (Conv1D) (None, 7, 32) 1056 max_pooling1d_2[0][0]
__________________________________________________________________________________________________
conv1d_1 (Conv1D) (None, 30, 32) 28832 lambda_1[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 1, 32) 0 dense_3[0][0]
__________________________________________________________________________________________________
dropout_5 (Dropout) (None, 7, 32) 0 conv1d_4[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 30, 32) 0 conv1d_1[0][0]
__________________________________________________________________________________________________
lambda_3 (Lambda) (None, 7, 32) 0 lambda_2[0][0]
dropout_5[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape) (None, 960) 0 dropout_1[0][0]
__________________________________________________________________________________________________
reshape_3 (Reshape) (None, 224) 0 lambda_3[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 32) 30752 reshape_1[0][0]
__________________________________________________________________________________________________
dense_4 (Dense) (None, 32) 7200 reshape_3[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 32) 0 dense_1[0][0]
__________________________________________________________________________________________________
dropout_6 (Dropout) (None, 32) 0 dense_4[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 1) 33 dropout_2[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 1) 33 dropout_6[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, 1) 0 dense_2[0][0]
dense_5[0][0]
__________________________________________________________________________________________________
dense_6 (Dense) (None, 2) 4 add_1[0][0]
==================================================================================================
Total params: 19,316,130
Trainable params: 19,316,130
Non-trainable params: 0
__________________________________________________________________________________________________
print("loading embedding ...")
glove_embedding = mz.datasets.embeddings.load_glove_embedding(dimension=300)
print("embedding loaded as `glove_embedding`")
embedding_matrix = glove_embedding.build_matrix(preprocessor.context['vocab_unit'].state['term_index'])
model.load_embedding_matrix(embedding_matrix)
loading embedding ...
embedding loaded as `glove_embedding`
pred_x, pred_y = predict_processed[:].unpack()
evaluate = mz.callbacks.EvaluateAllMetrics(model, x=pred_x, y=pred_y, batch_size=32)
train_generator = mz.DataGenerator(
train_processed,
mode='pair',
num_dup=1,
num_neg=1,
batch_size=32
)
print('num batches:', len(train_generator))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-31-2bc509c0414c> in <module>
4 num_dup=1,
5 num_neg=1,
----> 6 batch_size=32
7 )
8 print('num batches:', len(train_generator))
/usr/local/lib/python3.6/dist-packages/matchzoo/data_generator/data_generator.py in __init__(self, data_pack, mode, num_dup, num_neg, resample, batch_size, shuffle, callbacks)
113 data_pack.relation,
114 num_dup=num_dup,
--> 115 num_neg=num_neg
116 )
117
/usr/local/lib/python3.6/dist-packages/matchzoo/data_generator/data_generator.py in _reorganize_pair_wise(cls, relation, num_dup, num_neg)
279 pairs = []
280 groups = relation.sort_values(
--> 281 'label', ascending=False).groupby('id_left')
282 for idx, group in groups:
283 labels = group.label.unique()
~/.local/lib/python3.6/site-packages/pandas/core/frame.py in sort_values(self, by, axis, ascending, inplace, kind, na_position)
4723
4724 indexer = nargsort(k, kind=kind, ascending=ascending,
-> 4725 na_position=na_position)
4726
4727 new_data = self._data.take(indexer,
~/.local/lib/python3.6/site-packages/pandas/core/sorting.py in nargsort(items, kind, ascending, na_position)
271 non_nans = non_nans[::-1]
272 non_nan_idx = non_nan_idx[::-1]
--> 273 indexer = non_nan_idx[non_nans.argsort(kind=kind)]
274 if not ascending:
275 indexer = indexer[::-1]
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
history = model.fit_generator(train_generator, epochs=30, callbacks=[evaluate], workers=30, use_multiprocessing=True)
Epoch 1/30
15/11350 [..............................] - ETA: 1:05:34 - loss: 0.6261
Process ForkPoolWorker-58:
Process ForkPoolWorker-56:
Process ForkPoolWorker-59:
Process ForkPoolWorker-54:
Process ForkPoolWorker-42:
Process ForkPoolWorker-39:
Process ForkPoolWorker-37:
Process ForkPoolWorker-55:
Process ForkPoolWorker-57:
Process ForkPoolWorker-36:
Process ForkPoolWorker-44:
Process ForkPoolWorker-60:
Process ForkPoolWorker-41:
Process ForkPoolWorker-35:
Traceback (most recent call last):
Traceback (most recent call last):
Process ForkPoolWorker-38:
Process ForkPoolWorker-33:
Process ForkPoolWorker-53:
Process ForkPoolWorker-43:
Process ForkPoolWorker-51:
Traceback (most recent call last):
Process ForkPoolWorker-52:
Process ForkPoolWorker-40:
Process ForkPoolWorker-34:
Process ForkPoolWorker-31:
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Process ForkPoolWorker-32:
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Process ForkPoolWorker-46:
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
Process ForkPoolWorker-47:
Traceback (most recent call last):
Process ForkPoolWorker-50:
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Process ForkPoolWorker-45:
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Process ForkPoolWorker-48:
Process ForkPoolWorker-49:
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/queues.py", line 335, in get
res = self._reader.recv_bytes()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/pool.py", line 108, in worker
task = get()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/queues.py", line 334, in get
with self._rlock:
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
File "/usr/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
Traceback (most recent call last):
File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
self.run()
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-32-fb49b023fbc1> in <module>
----> 1 history = model.fit_generator(train_generator, epochs=30, callbacks=[evaluate], workers=30, use_multiprocessing=True)
/usr/local/lib/python3.6/dist-packages/matchzoo/engine/base_model.py in fit_generator(self, generator, epochs, verbose, **kwargs)
274 generator=generator,
275 epochs=epochs,
--> 276 verbose=verbose, **kwargs
277 )
278
~/.local/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~/.local/lib/python3.6/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support
~/.local/lib/python3.6/site-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
215 outs = model.train_on_batch(x, y,
216 sample_weight=sample_weight,
--> 217 class_weight=class_weight)
218
219 outs = to_list(outs)
~/.local/lib/python3.6/site-packages/keras/engine/training.py in train_on_batch(self, x, y, sample_weight, class_weight)
1215 ins = x + y + sample_weights
1216 self._make_train_function()
-> 1217 outputs = self.train_function(ins)
1218 return unpack_singleton(outputs)
1219
~/.local/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~/.local/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
KeyboardInterrupt:
File "/usr/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/usr/lib/python3.6/multiprocessing/pool.py", line 119, in worker
result = (True, func(*args, **kwds))
File "/home/bo/.local/lib/python3.6/site-packages/keras/utils/data_utils.py", line 401, in get_index
return _SHARED_SEQUENCES[uid][i]
File "/usr/local/lib/python3.6/dist-packages/matchzoo/data_generator/data_generator.py", line 132, in __getitem__
batch_data_pack = self._data_pack[indices]
File "/usr/local/lib/python3.6/dist-packages/matchzoo/data_pack/data_pack.py", line 168, in __getitem__
left = self._left.loc[relation['id_left'].unique()]
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexing.py", line 1500, in __getitem__
return self._getitem_axis(maybe_callable, axis=axis)
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexing.py", line 1902, in _getitem_axis
return self._getitem_iterable(key, axis=axis)
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexing.py", line 1205, in _getitem_iterable
raise_missing=False)
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexing.py", line 1155, in _get_listlike_indexer
keyarr = ax.reindex(keyarr)[0]
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 3120, in reindex
target = ensure_index(target)
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 5378, in ensure_index
return Index(index_like)
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 292, in __new__
elif (is_datetime64_any_dtype(data) or
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/dtypes/common.py", line 1114, in is_datetime64_any_dtype
return (is_datetime64_dtype(arr_or_dtype) or
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/dtypes/common.py", line 431, in is_datetime64_dtype
return _is_dtype_type(arr_or_dtype, classes(np.datetime64))
File "/home/bo/.local/lib/python3.6/site-packages/pandas/core/dtypes/common.py", line 119, in classes
return lambda tipo: issubclass(tipo, klasses)
KeyboardInterrupt
relation = train_processed.relation
relation.head()
id_left | id_right | label | |
---|---|---|---|
0 | 213221 | 213222.0 | [1, 0] |
1 | 536040 | 536041.0 | [0, 1] |
2 | 364011 | 490273.0 | [1, 0] |
3 | 155721 | 7256.0 | [0, 1] |
4 | 279958 | 279959.0 | [1, 0] |
relation.sort_values('label', ascending=False)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-30-e379a48ad6e6> in <module>
----> 1 relation.sort_values('label', ascending=False)
~/.local/lib/python3.6/site-packages/pandas/core/frame.py in sort_values(self, by, axis, ascending, inplace, kind, na_position)
4723
4724 indexer = nargsort(k, kind=kind, ascending=ascending,
-> 4725 na_position=na_position)
4726
4727 new_data = self._data.take(indexer,
~/.local/lib/python3.6/site-packages/pandas/core/sorting.py in nargsort(items, kind, ascending, na_position)
271 non_nans = non_nans[::-1]
272 non_nan_idx = non_nan_idx[::-1]
--> 273 indexer = non_nan_idx[non_nans.argsort(kind=kind)]
274 if not ascending:
275 indexer = indexer[::-1]
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
It's more like a pandas usage question. pandas's sort_values
can't sort numpy arrays, that's why.
To fix that, create a helper column:
df['label_as_tuple'] = df['label'].apply(tuple)
df.sort_values('label_as_tuple')
I hope things are working well for you now. I’ll go ahead and close this issue, but I’m happy to continue further discussion whenever needed.
Hi!@bwanglzu @uduse
I have met the same question! I hope I can get your help!Thx!
Traceback (most recent call last):
File "/home/zhl/MatchZoo-master/tutorials/untitled0.py", line 52, in
@aszhanghuali Have you tried creating a helper column as I suggested? Please provide more information so I can investigate.
I'll upload a notebook later.