NVIDIA-AI-IOT / cuPCL

A project demonstrating how to use the libs of cuPCL.
MIT License
570 stars 93 forks source link

Ubuntu 22.04 install #59

Open Michele1996 opened 3 months ago

Michele1996 commented 3 months ago

Hello, I'm trying to use cuPCL, and actually, when doing the make in cuICP, it says that :

USE Default CUDA DIR: /usr/local/cuda TARGET_ARCH: x86_64 CUDA_VERSION: 11080 SMS: 30 35 37 50 52 53 60 61 62 70 72
g++ -I/usr/local/cuda/include -I""/include -I/usr/local/include -I/usr/include/eigen3/ -I/usr/include/pcl-1.12/ -I/usr/include/vtk-9.1/ -D_REENTRANT -std=c++14 -O2 -fPIC -o obj/main.o -c main.cpp g++ -D_REENTRANT -std=c++14 -O2 -o demo obj/main.o -L/usr/lib -L/usr/local/lib -L/usr/local/cuda/lib64 -lcudart_static -lrt -ldl -lpthread -lcudart -L""/usr/lib/x86_64-linux-gnu/ -lcudnn -lpthread -L/usr/lib/aarch64-linux-gnu/ -lboost_system -lpcl_common -lpcl_io -lpcl_recognition -lpcl_features -lpcl_sample_consensus -lpcl_octree -lpcl_search -lpcl_filters -lpcl_kdtree -lpcl_segmentation -lpcl_visualization ./lib/libcudaicp.so /usr/bin/ld: ./lib/libcudaicp.so: error adding symbols: file in wrong format collect2: error: ld returned 1 exit status

Could you tell me how to install and test it?

MichaelTraore commented 2 months ago

hello! Well, as they have said in the readme, there are different branches for different architectures. Yours is X86_64, so you just have to switch to the x86_64_lib branch after you have cloned the repo