Closed Intron7 closed 1 year ago
@Intron7 Please provide us the OS version used in both case.
We noticed "OS call failed or operation not supported on this OS" in the error message. RMM is supported on Linux OS only.
Dear Rilango,
thank you for the quick reply. On our institute's sever we use Debian 10. On my local machine I use Ubuntu 20.04 LTS.
@Intron7, are you using conda? How did you build your environment? Can you provide the output of conda list
?
Here is the conda list
output:
# packages in environment at /home/sdicks-local/conda/rapids-0.18:
#
# Name Version Build Channel
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 1_gnu conda-forge
abseil-cpp 20200225.2 he1b5a44_2 conda-forge
aiohttp 3.7.4 py38h497a2fe_0 conda-forge
alsa-lib 1.2.3 h516909a_0 conda-forge
anndata 0.7.5 pypi_0 pypi
anyio 2.2.0 py38h578d9bd_0 conda-forge
appdirs 1.4.4 pyh9f0ad1d_0 conda-forge
argon2-cffi 20.1.0 py38h497a2fe_2 conda-forge
arrow-cpp 1.0.1 py38hcb5322d_14_cuda conda-forge
arrow-cpp-proc 3.0.0 cuda conda-forge
async-timeout 3.0.1 py_1000 conda-forge
async_generator 1.10 py_0 conda-forge
attrs 20.3.0 pyhd3deb0d_0 conda-forge
aws-c-common 0.4.59 h36c2ea0_1 conda-forge
aws-c-event-stream 0.1.6 had2084c_6 conda-forge
aws-checksums 0.1.10 h4e93380_0 conda-forge
aws-sdk-cpp 1.8.63 h9b98462_0 conda-forge
backcall 0.2.0 pyh9f0ad1d_0 conda-forge
backports 1.0 py_2 conda-forge
backports.functools_lru_cache 1.6.3 pyhd8ed1ab_0 conda-forge
blazingsql 0.18.0 pypi_0 pypi
bleach 3.3.0 pyh44b312d_0 conda-forge
bokeh 2.2.3 py38h578d9bd_0 conda-forge
boost 1.72.0 py38h1e42940_1 conda-forge
boost-cpp 1.72.0 h9d3c048_4 conda-forge
brotli 1.0.9 h9c3ff4c_4 conda-forge
brotlipy 0.7.0 py38h497a2fe_1001 conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
c-ares 1.17.1 h7f98852_1 conda-forge
ca-certificates 2021.1.19 h06a4308_1 defaults
cairo 1.16.0 h6cf1ce9_1008 conda-forge
certifi 2020.12.5 py38h06a4308_0 defaults
cffi 1.14.5 py38ha65f79e_0 conda-forge
cfitsio 3.470 hb418390_7 conda-forge
chardet 4.0.0 py38h578d9bd_1 conda-forge
click 7.1.2 pyh9f0ad1d_0 conda-forge
click-plugins 1.1.1 py_0 conda-forge
cligj 0.7.1 pyhd8ed1ab_0 conda-forge
cloudpickle 1.6.0 py_0 conda-forge
colorcet 2.0.6 pyhd8ed1ab_0 conda-forge
cryptography 3.4.7 py38ha5dfef3_0 conda-forge
cudatoolkit 11.0.221 h6bb024c_0 nvidia
cudf 0.18.1 cuda_11.0_py38_g999be56c80_0 rapidsai
cudf_kafka 0.18.1 py38_g999be56c80_0 rapidsai
cudnn 8.0.0 cuda11.0_0 nvidia
cugraph 0.18.0 py38_g65ec965f_0 rapidsai
cuml 0.18.0 cuda11.0_py38_gb5f59e005_0 rapidsai
cupy 8.0.0 py38hb7c6141_0 rapidsai
curl 7.75.0 h979ede3_0 conda-forge
cusignal 0.18.0 py38_g42899d2_0 rapidsai
cuspatial 0.18.0 py38_gf4da460_0 rapidsai
custreamz 0.18.1 py38_g999be56c80_0 rapidsai
cuxfilter 0.18.0 py38_gac6f488_0 rapidsai
cycler 0.10.0 pypi_0 pypi
cyrus-sasl 2.1.27 h3274739_1 conda-forge
cytoolz 0.11.0 py38h497a2fe_3 conda-forge
dask 2021.3.1 pyhd8ed1ab_0 conda-forge
dask-core 2021.3.1 pyhd8ed1ab_0 conda-forge
dask-cuda 0.18.0 py38_0 rapidsai
dask-cudf 0.18.1 py38_g999be56c80_0 rapidsai
datashader 0.11.1 pyh9f0ad1d_0 conda-forge
datashape 0.5.4 py_1 conda-forge
decorator 4.4.2 py_0 conda-forge
defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge
distributed 2021.3.1 py38h578d9bd_0 conda-forge
dlpack 0.3 he1b5a44_1 conda-forge
entrypoints 0.3 pyhd8ed1ab_1003 conda-forge
expat 2.3.0 h9c3ff4c_0 conda-forge
faiss-proc 1.0.0 cuda conda-forge
fastavro 1.3.4 py38h497a2fe_0 conda-forge
fastrlock 0.6 py38h709712a_0 conda-forge
fiona 1.8.18 py38h37fbd03_0 conda-forge
fontconfig 2.13.1 hba837de_1004 conda-forge
freetype 2.10.4 h0708190_1 conda-forge
freexl 1.0.6 h7f98852_0 conda-forge
fsspec 0.8.7 pyhd8ed1ab_0 conda-forge
future 0.18.2 py38h578d9bd_3 conda-forge
gdal 3.1.4 py38h25844d8_2 conda-forge
geopandas 0.8.1 py_0 conda-forge
geos 3.8.1 he1b5a44_0 conda-forge
geotiff 1.6.0 h5d11630_3 conda-forge
get-version 2.1 pypi_0 pypi
gettext 0.19.8.1 h0b5b191_1005 conda-forge
gflags 2.2.2 he1b5a44_1004 conda-forge
giflib 5.2.1 h36c2ea0_2 conda-forge
glog 0.4.0 h49b9bf7_3 conda-forge
google-cloud-cpp 1.16.0 he4a878c_2 conda-forge
google-cloud-cpp-common 0.25.0 he83eced_7 conda-forge
googleapis-cpp 0.10.0 h6b1abdc_4 conda-forge
graphite2 1.3.13 h58526e2_1001 conda-forge
greenlet 1.0.0 py38h709712a_0 conda-forge
grpc-cpp 1.32.0 h7997a97_1 conda-forge
h5py 3.2.1 pypi_0 pypi
harfbuzz 2.8.0 h83ec7ef_1 conda-forge
hdf4 4.2.13 h10796ff_1004 conda-forge
hdf5 1.10.6 nompi_h6a2412b_1114 conda-forge
heapdict 1.0.1 py_0 conda-forge
icu 68.1 h58526e2_0 conda-forge
idna 2.10 pyh9f0ad1d_0 conda-forge
importlib-metadata 3.9.0 py38h578d9bd_0 conda-forge
ipykernel 5.3.4 py38h5ca1d4c_0 defaults
ipython 7.22.0 py38hd0cf306_0 conda-forge
ipython_genutils 0.2.0 py_1 conda-forge
ipywidgets 7.6.3 pyhd3deb0d_0 conda-forge
jedi 0.18.0 py38h578d9bd_2 conda-forge
jinja2 2.11.3 pyh44b312d_0 conda-forge
joblib 1.0.1 pyhd8ed1ab_0 conda-forge
jpeg 9d h36c2ea0_0 conda-forge
jpype1 1.2.1 py38h1fd1430_0 conda-forge
json-c 0.13.1 hbfbb72e_1002 conda-forge
jsonschema 3.2.0 pyhd8ed1ab_3 conda-forge
jupyter-server-proxy 3.0.2 pyhd8ed1ab_0 conda-forge
jupyter_client 6.1.12 pyhd8ed1ab_0 conda-forge
jupyter_core 4.7.1 py38h578d9bd_0 conda-forge
jupyter_server 1.5.1 py38h578d9bd_0 conda-forge
jupyterlab-nvdashboard 0.4.0 pypi_0 pypi
jupyterlab_pygments 0.1.2 pyh9f0ad1d_0 conda-forge
jupyterlab_widgets 1.0.0 pyhd8ed1ab_1 conda-forge
kealib 1.4.14 hcc255d8_2 conda-forge
kiwisolver 1.3.1 pypi_0 pypi
krb5 1.17.2 h926e7f8_0 conda-forge
lcms2 2.12 hddcbb42_0 conda-forge
ld_impl_linux-64 2.35.1 hea4e1c9_2 conda-forge
legacy-api-wrap 1.2 pypi_0 pypi
leidenalg 0.8.3 pypi_0 pypi
libblas 3.9.0 8_openblas conda-forge
libcblas 3.9.0 8_openblas conda-forge
libcrc32c 1.1.1 h9c3ff4c_2 conda-forge
libcudf 0.18.1 cuda11.0_g999be56c80_0 rapidsai
libcudf_kafka 0.18.1 g999be56c80_0 rapidsai
libcugraph 0.18.0 cuda11.0_g65ec965f_0 rapidsai
libcuml 0.18.0 cuda11.0_gb5f59e005_0 rapidsai
libcumlprims 0.18.0 cuda11.0_g5939d3e_0 nvidia
libcurl 7.75.0 hc4aaa36_0 conda-forge
libcuspatial 0.18.0 cuda11.0_gf4da460_0 rapidsai
libdap4 3.20.6 hd7c4107_2 conda-forge
libedit 3.1.20191231 he28a2e2_2 conda-forge
libev 4.33 h516909a_1 conda-forge
libevent 2.1.10 hcdb4288_3 conda-forge
libfaiss 1.6.3 h328c4c8_3_cuda conda-forge
libffi 3.3 h58526e2_2 conda-forge
libgcc-ng 9.3.0 h2828fa1_18 conda-forge
libgcrypt 1.9.2 h7f98852_0 conda-forge
libgdal 3.1.4 h02eeb80_2 conda-forge
libgfortran-ng 9.3.0 hff62375_18 conda-forge
libgfortran5 9.3.0 hff62375_18 conda-forge
libglib 2.68.0 h3e27bee_2 conda-forge
libgomp 9.3.0 h2828fa1_18 conda-forge
libgpg-error 1.42 h9c3ff4c_0 conda-forge
libgsasl 1.8.0 2 conda-forge
libhwloc 2.3.0 h5e5b7d1_1 conda-forge
libiconv 1.16 h516909a_0 conda-forge
libkml 1.3.0 hd79254b_1012 conda-forge
liblapack 3.9.0 8_openblas conda-forge
libllvm10 10.0.1 he513fc3_3 conda-forge
libnetcdf 4.7.4 nompi_h56d31a8_107 conda-forge
libnghttp2 1.43.0 h812cca2_0 conda-forge
libntlm 1.4 h7f98852_1002 conda-forge
libopenblas 0.3.12 pthreads_h4812303_1 conda-forge
libpng 1.6.37 h21135ba_2 conda-forge
libpq 12.3 h255efa7_3 conda-forge
libprotobuf 3.13.0.1 h8b12597_0 conda-forge
librdkafka 1.5.3 h54cafa9_0 conda-forge
librmm 0.18.0 cuda11.0_ga4ee6b7_0 rapidsai
librttopo 1.1.0 hb271727_4 conda-forge
libsodium 1.0.18 h36c2ea0_1 conda-forge
libspatialindex 1.9.3 h9c3ff4c_3 conda-forge
libspatialite 5.0.1 h6ec7341_0 conda-forge
libssh2 1.9.0 ha56f1ee_6 conda-forge
libstdcxx-ng 9.3.0 h6de172a_18 conda-forge
libthrift 0.13.0 h5aa387f_6 conda-forge
libtiff 4.2.0 hdc55705_0 conda-forge
libutf8proc 2.6.1 h7f98852_0 conda-forge
libuuid 2.32.1 h7f98852_1000 conda-forge
libuv 1.41.0 h7f98852_0 conda-forge
libwebp 1.2.0 h3452ae3_0 conda-forge
libwebp-base 1.2.0 h7f98852_2 conda-forge
libxcb 1.13 h7f98852_1003 conda-forge
libxgboost 1.3.3dev.rapidsai0.18 cuda11.0_0 rapidsai
libxml2 2.9.10 h72842e0_3 conda-forge
llvmlite 0.36.0 py38h4630a5e_0 conda-forge
locket 0.2.0 py_2 conda-forge
louvain 0.7.0 pypi_0 pypi
lz4-c 1.9.2 he1b5a44_3 conda-forge
markdown 3.3.4 pyhd8ed1ab_0 conda-forge
markupsafe 1.1.1 py38h497a2fe_3 conda-forge
matplotlib 3.4.0 pypi_0 pypi
mistune 0.8.4 py38h497a2fe_1003 conda-forge
msgpack-python 1.0.2 py38h1fd1430_1 conda-forge
multicoretsne 0.1 pypi_0 pypi
multidict 5.1.0 py38h497a2fe_1 conda-forge
multipledispatch 0.6.0 py_0 conda-forge
munch 2.5.0 py_0 conda-forge
natsort 7.1.1 pypi_0 pypi
nbclient 0.5.3 pyhd8ed1ab_0 conda-forge
nbconvert 6.0.7 py38h578d9bd_3 conda-forge
nbformat 5.1.2 pyhd8ed1ab_1 conda-forge
nccl 2.7.8.1 h4962215_100 nvidia
ncurses 6.2 h58526e2_4 conda-forge
nest-asyncio 1.4.3 pyhd8ed1ab_0 conda-forge
netifaces 0.10.9 py38h497a2fe_1003 conda-forge
networkx 2.5 py_0 conda-forge
nodejs 14.15.4 h92b4a50_1 conda-forge
notebook 6.3.0 py38h578d9bd_0 conda-forge
numba 0.53.1 py38h0e12cce_0 conda-forge
numexpr 2.7.3 pypi_0 pypi
numpy 1.19.5 py38h18fd61f_1 conda-forge
nvtx 0.2.3 py38h497a2fe_0 conda-forge
olefile 0.46 pyh9f0ad1d_1 conda-forge
openjdk 11.0.9.1 h5cc2fde_1 conda-forge
openjpeg 2.4.0 hf7af979_0 conda-forge
openssl 1.1.1k h27cfd23_0 defaults
orc 1.6.5 hd3605a7_0 conda-forge
packaging 20.9 pyh44b312d_0 conda-forge
pandas 1.1.5 py38h51da96c_0 conda-forge
pandoc 2.12 h7f98852_0 conda-forge
pandocfilters 1.4.2 py_1 conda-forge
panel 0.10.3 pyhd8ed1ab_0 conda-forge
param 1.10.1 pyhd3deb0d_0 conda-forge
parquet-cpp 1.5.1 2 conda-forge
parso 0.8.1 pyhd8ed1ab_0 conda-forge
partd 1.1.0 py_0 conda-forge
patsy 0.5.1 pypi_0 pypi
pcre 8.44 he1b5a44_0 conda-forge
pexpect 4.8.0 pyh9f0ad1d_2 conda-forge
pickleshare 0.7.5 py_1003 conda-forge
pillow 8.1.2 py38ha0e1e83_0 conda-forge
pip 21.0.1 pyhd8ed1ab_0 conda-forge
pixman 0.40.0 h36c2ea0_0 conda-forge
poppler 0.89.0 h2de54a5_5 conda-forge
poppler-data 0.4.10 0 conda-forge
postgresql 12.3 hc2f5b80_3 conda-forge
proj 7.1.1 h966b41f_3 conda-forge
prometheus_client 0.9.0 pyhd3deb0d_0 conda-forge
prompt-toolkit 3.0.18 pyha770c72_0 conda-forge
protobuf 3.13.0.1 py38hadf7658_1 conda-forge
psutil 5.8.0 py38h497a2fe_1 conda-forge
pthread-stubs 0.4 h36c2ea0_1001 conda-forge
ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge
py-xgboost 1.3.3dev.rapidsai0.18 cuda11.0py38_0 rapidsai
pyarrow 1.0.1 py38h3e2403a_14_cuda conda-forge
pycparser 2.20 pyh9f0ad1d_2 conda-forge
pyct 0.4.6 py_0 conda-forge
pyct-core 0.4.6 py_0 conda-forge
pydeck 0.5.0 pyh9f0ad1d_0 conda-forge
pyee 7.0.4 pyh9f0ad1d_0 conda-forge
pygments 2.8.1 pyhd8ed1ab_0 conda-forge
pyhive 0.6.3 pyhd3deb0d_0 conda-forge
pynndescent 0.5.2 pypi_0 pypi
pynvml 8.0.4 py_1 conda-forge
pyopenssl 20.0.1 pyhd8ed1ab_0 conda-forge
pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge
pyppeteer 0.2.2 py_1 conda-forge
pyproj 2.6.1.post1 py38h56787f0_3 conda-forge
pyrsistent 0.17.3 py38h497a2fe_2 conda-forge
pysocks 1.7.1 py38h578d9bd_3 conda-forge
python 3.8.8 hffdb5ce_0_cpython conda-forge
python-confluent-kafka 1.5.0 py38h1e0a361_0 conda-forge
python-dateutil 2.8.1 py_0 conda-forge
python-igraph 0.9.1 pypi_0 pypi
python_abi 3.8 1_cp38 conda-forge
pytz 2021.1 pyhd8ed1ab_0 conda-forge
pyviz_comms 2.0.1 pyhd3deb0d_0 conda-forge
pyyaml 5.4.1 py38h497a2fe_0 conda-forge
pyzmq 22.0.3 py38h2035c66_1 conda-forge
rapids 0.18.0 cuda11.0_py38_g334c31e_223 rapidsai
rapids-blazing 0.18.0 cuda11.0_py38_g334c31e_223 rapidsai
rapids-xgboost 0.18.0 cuda11.0_py38_g334c31e_223 rapidsai
re2 2020.10.01 he1b5a44_0 conda-forge
readline 8.0 he28a2e2_2 conda-forge
requests 2.25.1 pyhd3deb0d_0 conda-forge
rmm 0.18.0 cuda_11.0_py38_ga4ee6b7_0 rapidsai
rtree 0.9.7 py38h02d302b_1 conda-forge
sasl 0.2.1 py38h950e882_1002 conda-forge
scanpy 1.7.1 pypi_0 pypi
scikit-learn 0.24.1 py38h658cfdd_0 conda-forge
scipy 1.6.2 py38h7b17777_0 conda-forge
seaborn 0.11.1 pypi_0 pypi
send2trash 1.5.0 py_0 conda-forge
setuptools 49.6.0 py38h578d9bd_3 conda-forge
shapely 1.7.1 py38ha11d057_1 conda-forge
simpervisor 0.4 pyhd8ed1ab_0 conda-forge
sinfo 0.3.1 pypi_0 pypi
six 1.15.0 pyh9f0ad1d_0 conda-forge
snappy 1.1.8 he1b5a44_3 conda-forge
sniffio 1.2.0 py38h578d9bd_1 conda-forge
sortedcontainers 2.3.0 pyhd8ed1ab_0 conda-forge
spdlog 1.7.0 hc9558a2_2 conda-forge
sqlalchemy 1.4.3 py38h497a2fe_0 conda-forge
sqlite 3.35.3 h74cdb3f_0 conda-forge
statsmodels 0.12.2 pypi_0 pypi
stdlib-list 0.8.0 pypi_0 pypi
streamz 0.6.2 pyh44b312d_0 conda-forge
tables 3.6.1 pypi_0 pypi
tblib 1.7.0 pyhd8ed1ab_0 conda-forge
terminado 0.9.3 py38h578d9bd_0 conda-forge
testpath 0.4.4 py_0 conda-forge
texttable 1.6.3 pypi_0 pypi
threadpoolctl 2.1.0 pyh5ca1d4c_0 conda-forge
thrift 0.13.0 py38h709712a_2 conda-forge
thrift_sasl 0.3.0 py38h1e0a361_1002 conda-forge
tiledb 2.1.6 h1022b9d_0 conda-forge
tk 8.6.10 h21135ba_1 conda-forge
toolz 0.11.1 py_0 conda-forge
tornado 6.1 py38h497a2fe_1 conda-forge
tqdm 4.59.0 pyhd8ed1ab_0 conda-forge
traitlets 5.0.5 py_0 conda-forge
treelite 1.0.0 py38hd08a91b_0 conda-forge
treelite-runtime 1.0.0 pypi_0 pypi
typing-extensions 3.7.4.3 0 conda-forge
typing_extensions 3.7.4.3 py_0 conda-forge
tzcode 2021a h7f98852_1 conda-forge
ucx 1.9.0+gcd9efd3 cuda11.0_0 rapidsai
ucx-proc 1.0.0 gpu rapidsai
ucx-py 0.18.0 py38_gcd9efd3_0 rapidsai
umap-learn 0.5.1 pypi_0 pypi
urllib3 1.26.4 pyhd8ed1ab_0 conda-forge
wcwidth 0.2.5 pyh9f0ad1d_2 conda-forge
webencodings 0.5.1 py_1 conda-forge
websockets 8.1 py38h497a2fe_3 conda-forge
wget 3.2 pypi_0 pypi
wheel 0.36.2 pyhd3deb0d_0 conda-forge
widgetsnbextension 3.5.1 py38h578d9bd_4 conda-forge
xarray 0.17.0 pyhd8ed1ab_0 conda-forge
xerces-c 3.2.3 h9d8b166_2 conda-forge
xgboost 1.3.3dev.rapidsai0.18 cuda11.0py38_0 rapidsai
xorg-fixesproto 5.0 h14c3975_1002 conda-forge
xorg-inputproto 2.3.2 h7f98852_1002 conda-forge
xorg-kbproto 1.0.7 h7f98852_1002 conda-forge
xorg-libice 1.0.10 h7f98852_0 conda-forge
xorg-libsm 1.2.3 hd9c2040_1000 conda-forge
xorg-libx11 1.6.12 h516909a_0 conda-forge
xorg-libxau 1.0.9 h7f98852_0 conda-forge
xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge
xorg-libxext 1.3.4 h516909a_0 conda-forge
xorg-libxfixes 5.0.3 h516909a_1004 conda-forge
xorg-libxi 1.7.10 h516909a_0 conda-forge
xorg-libxrender 0.9.10 h516909a_1002 conda-forge
xorg-libxtst 1.2.3 h516909a_1002 conda-forge
xorg-recordproto 1.14.2 h516909a_1002 conda-forge
xorg-renderproto 0.11.1 h7f98852_1002 conda-forge
xorg-xextproto 7.3.0 h7f98852_1002 conda-forge
xorg-xproto 7.0.31 h7f98852_1007 conda-forge
xz 5.2.5 h516909a_1 conda-forge
yaml 0.2.5 h516909a_0 conda-forge
yarl 1.6.3 py38h497a2fe_1 conda-forge
zeromq 4.3.4 h9c3ff4c_0 conda-forge
zict 2.0.0 py_0 conda-forge
zipp 3.4.1 pyhd8ed1ab_0 conda-forge
zlib 1.2.11 h516909a_1010 conda-forge
zstd 1.4.8 hdf46e1d_0 conda-forge
I installed the rapids-0.18 environment with conda create -p ~/conda/rapids-0.18 -c rapidsai -c nvidia -c conda-forge -c defaults rapids-blazing=0.18 python=3.8 cudatoolkit=11.0
. Then I installed the other packages like Scanpy with pip.
Yesterday I also tried the cuda-11.0 docker with the same result.
I can reproduce this issue. Additional stacktrace info
ipp1-0129:2216 :0:2216] Caught signal 11 (Segmentation fault: address not mapped to object at address 0x10) ==== backtrace (tid: 2216) ==== 0 /root/conda/rapids-0.18/lib/python3.8/site-packages/ucp/_libs/../../../../libucs.so.0(ucs_handle_error+0x115) [0x7fdc36e10ee5] 1 /root/conda/rapids-0.18/lib/python3.8/site-packages/ucp/_libs/../../../../libucs.so.0(+0x26281) [0x7fdc36e11281] 2 /root/conda/rapids-0.18/lib/python3.8/site-packages/ucp/_libs/../../../../libucs.so.0(+0x26452) [0x7fdc36e11452] 3 /lib/x86_64-linux-gnu/libpthread.so.0(+0x12730) [0x7fde1a6fd730] 4 /root/conda/rapids-0.18/lib/python3.8/site-packages/scipy/sparse/_sparsetools.cpython-38-x86_64-linux-gnu.so(+0x4e7e) [0x7fdd7951de7e] 5 /root/conda/rapids-0.18/lib/python3.8/site-packages/scipy/sparse/_sparsetools.cpython-38-x86_64-linux-gnu.so(+0x5bb0) [0x7fdd7951ebb0] 6 /root/conda/rapids-0.18/bin/python(PyCFunction_Call+0xf9) [0x56359fcf0e99] 7 /root/conda/rapids-0.18/bin/python(_PyObject_MakeTpCall+0x31e) [0x56359fcfff2e] 8 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x4f2e) [0x56359fd99b4e] 9 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 10 /root/conda/rapids-0.18/bin/python(+0x1b2007) [0x56359fd77007] 11 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x1782) [0x56359fd963a2] 12 /root/conda/rapids-0.18/bin/python(+0x1b1e86) [0x56359fd76e86] 13 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x4ca3) [0x56359fd998c3] 14 /root/conda/rapids-0.18/bin/python(_PyFunction_Vectorcall+0x1a6) [0x56359fd76706] 15 /root/conda/rapids-0.18/bin/python(+0x18287d) [0x56359fd4787d] 16 /root/conda/rapids-0.18/bin/python(PyObject_GetItem+0x45) [0x56359fd4cbd5] 17 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0xd3d) [0x56359fd9595d] 18 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 19 /root/conda/rapids-0.18/bin/python(PyEval_EvalCodeEx+0x39) [0x56359fd76559] 20 /root/conda/rapids-0.18/bin/python(PyEval_EvalCode+0x1b) [0x56359fe199ab] 21 /root/conda/rapids-0.18/bin/python(+0x2731de) [0x56359fe381de] 22 /root/conda/rapids-0.18/bin/python(+0x128d4b) [0x56359fcedd4b] 23 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x92f) [0x56359fd9554f] 24 /root/conda/rapids-0.18/bin/python(+0x182ea3) [0x56359fd47ea3] 25 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x1d37) [0x56359fd96957] 26 /root/conda/rapids-0.18/bin/python(+0x182ea3) [0x56359fd47ea3] 27 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x1d37) [0x56359fd96957] 28 /root/conda/rapids-0.18/bin/python(+0x182ea3) [0x56359fd47ea3] 29 /root/conda/rapids-0.18/bin/python(+0x1958c9) [0x56359fd5a8c9] 30 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0xa4b) [0x56359fd9566b] 31 /root/conda/rapids-0.18/bin/python(_PyFunction_Vectorcall+0x1a6) [0x56359fd76706] 32 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x92f) [0x56359fd9554f] 33 /root/conda/rapids-0.18/bin/python(_PyFunction_Vectorcall+0x1a6) [0x56359fd76706] 34 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0xa4b) [0x56359fd9566b] 35 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 36 /root/conda/rapids-0.18/bin/python(_PyFunction_Vectorcall+0x378) [0x56359fd768d8] 37 /root/conda/rapids-0.18/bin/python(+0x1b1f91) [0x56359fd76f91] 38 /root/conda/rapids-0.18/bin/python(PyObject_Call+0x5e) [0x56359fcea0be] 39 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x21c1) [0x56359fd96de1] 40 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 41 /root/conda/rapids-0.18/bin/python(+0x1b2007) [0x56359fd77007] 42 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x1782) [0x56359fd963a2] 43 /root/conda/rapids-0.18/bin/python(+0x1925da) [0x56359fd575da] 44 /root/conda/rapids-0.18/bin/python(+0x128d4b) [0x56359fcedd4b] 45 /root/conda/rapids-0.18/bin/python(+0x13b3ea) [0x56359fd003ea] 46 /root/conda/rapids-0.18/bin/python(+0x21da4f) [0x56359fde2a4f] 47 /root/conda/rapids-0.18/bin/python(+0x128fc2) [0x56359fcedfc2] 48 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x92f) [0x56359fd9554f] 49 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 50 /root/conda/rapids-0.18/bin/python(_PyFunction_Vectorcall+0x378) [0x56359fd768d8] 51 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0xa4b) [0x56359fd9566b] 52 /root/conda/rapids-0.18/bin/python(+0x1925da) [0x56359fd575da] 53 /root/conda/rapids-0.18/bin/python(+0x128d4b) [0x56359fcedd4b] 54 /root/conda/rapids-0.18/bin/python(+0x13b3ea) [0x56359fd003ea] 55 /root/conda/rapids-0.18/bin/python(+0x21da4f) [0x56359fde2a4f] 56 /root/conda/rapids-0.18/bin/python(+0x128fc2) [0x56359fcedfc2] 57 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x92f) [0x56359fd9554f] 58 /root/conda/rapids-0.18/bin/python(_PyEval_EvalCodeWithName+0x2c3) [0x56359fd75503] 59 /root/conda/rapids-0.18/bin/python(+0x1b2007) [0x56359fd77007] 60 /root/conda/rapids-0.18/bin/python(_PyEval_EvalFrameDefault+0x92f) [0x56359fd9554f] 61 /root/conda/rapids-0.18/bin/python(+0x1925da) [0x56359fd575da]
@Intron7 Please try with USE_FIRST_N_CELLS = 700000
Meanwhile, we will be creating a bug with RAPIDS regarding this issue.
@rilango I ran it with 70000 cells today and it ran perfectly.
Hi,
i am trying to run the gpu pipeline using my dataset that contains adata.X.shape
(645559, 66696). I am running this on my local machine that has 80GB ram and Nvidia-RTX 3090 with 24GB vRAM.
The workflow runs but
%%time
tmp_norm = sparse_gpu_array.tocsc()
marker_genes_raw = {
("%s_raw" % marker): tmp_norm[:, genes[genes == marker].index[0]].todense().ravel()
for marker in markers
}
del tmp_norm
gives a memory error "MemoryError: std::bad_alloc: CUDA error at: /home/monib/anaconda3/envs/rapidgenomics/include/rmm/mr/device/managed_memory_resource.hpp:73: cudaErrorIllegalAddress an illegal memory access was encountered"
any suggestions?
Best regards Monib
You seem to have the same error that I had. @rilango pointed out that if you oversubscribe the VRAM more than 2x notebooks tend to crash.
This example relies heavily on UVM. While it should work on any GPU built on the Pascal architecture or newer, you will want to make sure there is enough main memory available. Oversubscribing a GPU by more than a factor of 2x can cause thrashing in UVM, which can ultimately lead to the notebook freezing.
I see. How did/do you change this ? Is there a command, setting or function call option I have to set for this?
Thank you
Recently a multi-GPU version of the notebook was added to the examples.
This allows much larger datasets. Please check if this helps.
@m0nib what kind of dataset do you have with almost 70000 features? I would suggest to restrict that featurespace and cleanup the vram as much as possible
@Intron7 It’s a human lung cell atlas dataset. I have a subset with the disease on interest. I collated 4 datasets as well as the hlca and want to do clustering, and differential analysis.
@rilango thank for the info I will have a look.
Recently a multi-GPU version of the notebook was added to the examples.
This allows much larger datasets. Please check if this helps.
Hi @rilango I tried by setting up a fresh conda environment using the latest rapidgenomics files and ran the 1M_brain notebook.
i have only a single gpu RTX-3090, so i made sure that was reflected in cluster block of the notebook.
After running through the notebokk few times I keep getting an error:
%%time from cuml.dask.decomposition import PCA pca_data = PCA(n_components=50).fit_transform(dask_sparse_arr) pca_data.compute_chunk_sizes()
distributed.worker - WARNING - Compute Failed Function: _func_fit args: (PCAMG(), < could not convert arg to str >, 1291337, 4000, [(0, 163266), (0, 163266), (0, 163266), (0, 163266), (0, 163266), (0, 163266), (0, 163266), (0, 148475)], 0, False) kwargs: {} Exception: CUDADriverError('CUDA_ERROR_ILLEGAL_ADDRESS: an illegal memory access was encountered')
and using my own data set i can get past this point but i get an error in adata.obsm['X_tsne'] = TSNE().fit_transform(adata.X[:,:tsne_n_pcs])
Any suggestions on this issue?
Thanks Best regards Monib
@m0nib Sorry for the delay in response. Can you please send us the error you are getting from adata.obsm['X_tsne'] = TSNE().fit_transform(adata.X[:,:tsne_n_pcs])?
Hello everyone,
I'm having trouble running the notebooks on our institutes server (64 Core Epyc and 2 Quadro RTX 6000), however when I'm at home running them on my personal computer (AMD 5950x and RTX 3090) the notebooks run perfectly. If I run the 1M Brain GPU notebook it crashes once it reaches the
sparse_gpu_array = cp.sparse.csr_matrix(adata.X[:USE_FIRST_N_CELLS], dtype=cp.float32)
lineI can produce the same error when I run the hlca gpu notebook during
adata.obsm["X_pca"] = PCA(n_components=n_components, output_type="numpy").fit_transform(adata.X)
, if I wait some time after the scaling and before the PCA step. If submit the whole notebook at once I don't get any issues on the server. So far I tested these notebooks with rapids-0.18 for CUDAtoolkit 10.1 and 11.0. What is the issue here and how can I fix it? I am also confused since both the Quadro RTX 6000 and the RTX3090 have 24GB of VRAM. Could this be an issue with the memory allocation with rmm? Thank you for your help.