Open PaulSteffen-betclic opened 1 year ago
When I try to use the class_weight arg in .fit() method of DLRMModel, I got the following error:
class_weight
.fit()
DLRMModel
Can someone know why please ? As shown in the following link, it seems to work with earlier versions: https://github.com/NVIDIA-Merlin/publications/blob/2761dade6d725615f0dd2c9491c54f8b397912e0/tutorials/RecSys22tutorial/04-Building-multi-stage-RecSys.ipynb#L731
Thanks
import nvtabular as nvt import tensorflow as tf import merlin.models.tf as mm from merlin.models.tf.transforms.negative_sampling import InBatchNegatives from merlin.dataloader.tensorflow import Loader processed_train = nvt.Dataset(f"{output_path}/train/*.parquet") schema = processed_train.schema target_column = schema.select_by_tag(Tags.TARGET).column_names[0] batch_size, n_per_positive = 2048, 64 add_negatives = InBatchNegatives(schema, n_per_positive, seed=42, prep_features=True, run_when_testing=True) train_loader = Loader(processed_train, batch_size=batch_size).map(add_negatives) valid_loader = Loader(processed_valid, batch_size=batch_size).map(add_negatives) ranking_model = mm.DLRMModel( schema, embedding_dim=16, bottom_block=mm.MLPBlock([32, 16]), top_block=mm.MLPBlock([32, 16, 8]), prediction_tasks=mm.BinaryClassificationTask(target_column), ) ranking_model.compile(optimizer='adam', run_eagerly=False, metrics=[], weighted_metrics=[tf.keras.metrics.BinaryAccuracy(),tf.keras.metrics.AUC()] ) ranking_model.fit(train_loader, class_weight = {0: 1, 1: n_per_positive}, epochs=2, train_metrics_steps=100) #error when using class_weight
Success to use class_weight (required with the negative sampling step).
@PaulSteffen-betclic can you share your train.schema file?
Bug description
When I try to use the
class_weight
arg in.fit()
method ofDLRMModel
, I got the following error:Can someone know why please ? As shown in the following link, it seems to work with earlier versions: https://github.com/NVIDIA-Merlin/publications/blob/2761dade6d725615f0dd2c9491c54f8b397912e0/tutorials/RecSys22tutorial/04-Building-multi-stage-RecSys.ipynb#L731
Thanks
Steps/Code to reproduce bug
Expected behavior
Success to use class_weight (required with the negative sampling step).
Environment details