Open francois-drielsma opened 6 months ago
Having a similar issue with MinkowskiConvolutionTranspose
, even with the older version of PyTorch. This:
import torch
import MinkowskiEngine as ME
input = ME.SparseTensor(coordinates=torch.empty(0,4).to(dtype=torch.int), features=torch.empty(0,1))
conv = ME.MinkowskiConvolution(in_channels=1, out_channels=4, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1], dimension=3)
conv_t = ME.MinkowskiConvolutionTranspose(in_channels=4, out_channels=4, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1], dimension=3)
x = conv(input)
x = conv_t(x)
throws a segfault on the last line.
Describe the bug When passing an empty
SparseTensor
object through aMinkowskiConvolution
, MinkowskiEngine throws a segfault.To Reproduce Docker image: deeplearnphysics/larcv2:ub20.04-cuda12.1-pytorch2.2.1-larndsim
Code snippet
Expected behavior Would hope for an empty output with the appropriate number of features, e.g.:
Desktop (please complete the following information):
python -c "import MinkowskiEngine as ME; ME.print_diagnostics()"
. Otherwise, paste the output of the following command.)==========MinkowskiEngine========== 0.5.4 MinkowskiEngine compiled with CUDA Support: True NVCC version MinkowskiEngine is compiled: 12010 CUDART version MinkowskiEngine is compiled: 12010