Closed vinhngx closed 2 years ago
A work-around was suggested by Patrice C. to add --max-dim=100000
:
nemo2riva --out my_speech_service-2.riva stt_en_citrinet_1024.nemo --max-dim=100000
@borisfom can that 100000 flag be set programmatically in Nemo for certain models ?
@titu1994 I am working with Mandarin Citinet Pretrain model. I am able to convert this to rmir and models.
My question is for its inference scipt. I need to chnage the langugae_code-
en-US is for English. What it would be for Mandarin.. zh? Please help.
I think functionally, the language code can be pretty much anything you like, just be consistent when you build the Riva service and when you make the inference call. But to adhere to convention, maybe one of zh-CN, zh-TW, zh-CHT, zh-CHS...
Riva uses it to match a capitalization & punctuation model with the same language code. To call a Riva custom acoustic model you'll have to specify the model name in the request though.
You can also explicitly select which ASR model to use by setting the model field of the RecognitionConfig protobuf object to the value of <pipeline_name> which was used with the riva-build command. This enables you to deploy multiple ASR pipelines concurrently and select which one to use at runtime.
Thanks @vinhngx for the information.
@titu1994 @vinhngx I have another doubt/error.
I have created models/ using riva-deploy command, https://docs.nvidia.com/deeplearning/riva/user-guide/docs/model-overview.html?highlight=enemo#using-riva-deploy-and-riva-speech-container-advanced
In the above link, point 2,, I have followed -
sudo docker run --runtime=nvidia -it --rm -e NVIDIA_VISIBLE_DEVICES=0 -v /path_of_local_models_folder/:/data -p 50051 --name riva-speech nvcr.io/nvidia/riva/riva-speech:2.1.0-server start-riva --riva-uri=0.0.0.0:50051 --nlp_service=false --asr_service=true --tts_service=false
But it stuck at this logs only - I0513 08:08:20.884277 97 server.cc:592] +------------------------------------------------+---------+--------+ | Model | Version | Status | +------------------------------------------------+---------+--------+ | riva-asr | 1 | READY | | riva-asr-ctc-decoder-cpu-streaming | 1 | READY | | riva-asr-feature-extractor-streaming | 1 | READY | | riva-asr-voice-activity-detector-ctc-streaming | 1 | READY | | riva-trt-riva-asr-am-streaming | 1 | READY | +------------------------------------------------+---------+--------+
I0513 08:08:20.936965 97 metrics.cc:623] Collecting metrics for GPU 0: A100-SXM4-40GB I0513 08:08:20.938043 97 tritonserver.cc:1932] +----------------------------------+--------------------------------------------------------------------------------------------------------+ | Option | Value | +----------------------------------+--------------------------------------------------------------------------------------------------------+ | server_id | triton | | server_version | 2.19.0 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_con | | | figuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace | | model_repository_path[0] | /data/models | | model_control_mode | MODE_NONE | | strict_model_config | 1 | | rate_limit | OFF | | pinned_memory_pool_byte_size | 268435456 | | cuda_memory_pool_byte_size{0} | 1000000000 | | response_cache_byte_size | 0 | | min_supported_compute_capability | 6.0 | | strict_readiness | 1 | | exit_timeout | 30 | +----------------------------------+--------------------------------------------------------------------------------------------------------+
I0513 08:08:20.940017 97 grpc_server.cc:4375] Started GRPCInferenceService at 0.0.0.0:8001 I0513 08:08:20.940303 97 http_server.cc:3075] Started HTTPService at 0.0.0.0:8000 I0513 08:08:20.981602 97 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
Triton server is ready... I0513 08:08:21.016841 175 riva_server.cc:118] Using Insecure Server Credentials I0513 08:08:21.020602 175 model_registry.cc:112] Successfully registered: riva-asr for ASR W0513 08:08:21.032874 175 grpc_riva_asr.cc:188] riva-asr has no configured wfst normalizer model I0513 08:08:21.033236 175 riva_server.cc:158] Riva Conversational AI Server listening on 0.0.0.0:50051 W0513 08:08:21.033278 175 stats_reporter.cc:41] No API key provided. Stats reporting disabled.
Am I missing some?
This seems to be ok, I don't see any error log. The penultimate line states that Riva Conversational AI Server is listening on port 50051. In the next step you can use the transcribe_file.py
from the Riva Quickstart examples folder, or write your own grpc client to communicate with Riva.
okay, thanks @itzsimpl.
okay, thanks @itzsimpl.
But one more question- in the config.sh.. I found this, en-US used twice,Is there punctional model available for mandarin. @titu1994
No, see https://docs.nvidia.com/deeplearning/riva/user-guide/docs/asr/asr-overview.html. Note that the latest version of Riva is 2.1.0.
No, see https://docs.nvidia.com/deeplearning/riva/user-guide/docs/asr/asr-overview.html. Note that the latest version of Riva is 2.1.0. got it. Thnks
Describe the bug This Nemo model: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_1024
When build and deploy with Riva 1.10.0-beta (offline config) fails with:
Steps/Code to reproduce bug
Download the above model from NGC. Convert to Riva with:
nemo2riva --out my_speech_service-2.riva stt_en_citrinet_1024.nemo
Using docker container: nvcr.io/nvidia/nemo:22.01Build for offline deployment using docker container: nvcr.io/nvidia/riva/riva-speech:1.10.0-beta-servicemaker
Riva deploy using docker container: nvcr.io/nvidia/riva/riva-speech:1.10.0-beta-servicemaker:
A helpful guide on on how to craft a minimal bug report http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports.
Expected behavior
A clear and concise description of what you expected to happen.
Environment overview (please complete the following information)
docker pull
&docker run
commands usedEnvironment details
If NVIDIA docker image is used you don't need to specify these. Otherwise, please provide:
Additional context
Add any other context about the problem here. GPU: V100 32GB