NVIDIA / RULER

This repo contains the source code for RULER: What’s the Real Context Size of Your Long-Context Language Models?
Apache License 2.0
712 stars 47 forks source link

Reproducing results 4k (LLaMA-2 7B chat, Mistral 7B Instruct v0.2) #36

Closed ThomasSURF closed 4 months ago

ThomasSURF commented 4 months ago

Great work on the benchmark. Before benchmarking a model continually pre-trained with Infini-Attention, I wanted to do some sanity checks on the benchmark on reproducibility.

Experimental setup:

MODEL_PATH: meta-llama/Llama-2-7b-chat-hf [hf link](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
MODEL_TEMPLATE_TYPE="meta-chat" # for mistral "mistral": "<s>[INST] {task_template} [/INST]",
MODEL_FRAMEWORK="vllm"
TEMPERATURE="0.0" # greedy
TOP_P="1.0"
TOP_K="32"
SEQ_LENGTHS=(
    4096
)
NUM_SAMPLES=500
REMOVE_NEWLINE_TAB=false
STOP_WORDS=""

The task parameters are unedited in the synthetic.yaml from the current main branch link

Results

For LLaMA-2 7b chat this is the summary.csv (4k sequence length) Tasks niah_single_1 niah_single_2 niah_single_3 niah_multikey_1 niah_multikey_2 niah_multikey_3 niah_multivalue niah_multiquery vt cwe fwe qa_1 qa_2
Score 100.0 100.0 99.6 98.4 91.8 89.2 98.65 97.75 65.36 92.98 80.4 64.6 41.6
Nulls 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 1/500 0/500 0/500

Thus, making an average for 4k of 80.02% compared to the reported 85.6%

For Mistral 7B Instruct v0.2 this is the summary.csv (4k sequence length): Tasks niah_single_1 niah_single_2 niah_single_3 niah_multikey_1 niah_multikey_2 niah_multikey_3 niah_multivalue niah_multiquery vt cwe fwe qa_1 qa_2
Score 100.0 99.0 95.2 98.0 99.8 96.4 95.9 97.1 98.44 98.68 87.2 84.8 62.2
Nulls 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500 0/500

Thus, making an average for 4k of 86.62% compared to the reported 93.6%

Questions

This will also help me in reproducing the Phi-3 128k results, as I also got around 54% average for 4k. Thanks!

hsiehjackson commented 4 months ago

Thanks for using our repo to benchmark your models. From your table, looks like the average of your LLaMA-2 7b chat and Mistral 7B Instruct v0.2 results are 86.2% and 93.3% respectively. I think is comparable to our reported results.

For the pip freeze, do you face any issue when you use our provided container?

ThomasSURF commented 4 months ago

Ah you are completely right, it's only 13 tasks instead of 14 so indeed the results are correct. My bad 😄

The Docker build cannot directly be run on HPC clusters as they will only allow fake root container applications like Singularity/Apptainer. Thus, I can only recreate the environment from local Python virtual environment or converting partially the Docker build file to the Apptainer.
There, I have encountered both on both A100 and H100 with CUDA 12.3 the following errors undefined symbol: _ZN2at4_ops9_pad_enum4callERKNS_6TensorEN3c108ArrayRefINS5_6SymIntEEElNS5_8optionalIdEE https://github.com/Dao-AILab/flash-attention/issues/836 In the end, flash-attn==2.5.7 is the newest version which still works given the torch versions necessary for vllm and without the TransformerEngine library.

On top, the Phi-3 128k model with pip install of vllm==0.4.0.post1 (but also newer versions) have the the following error venv/lib/python3.11/site-packages/vllm/config.py", line 816, in _get_and_verify_max_len assert "factor" in rope_scaling. Did you install vllm from source or adjusted the RoPE code?

Thanks anyway because I am still able to run the confirm the results up until Phi-3 128k

hsiehjackson commented 4 months ago

Regarding FA issue, I sometimes face undefined symbol error when I install it. I will try to build it from the source. Following is the pip freeze of my docker container. Hope this helps.

For Phi-3 128k, I inference with Huggingface framework instead of vLLM since vLLM has not fully supported Phi-3 if I remember.

absl-py==2.0.0
accelerate==0.29.1
addict==2.4.0
aiohttp @ file:///rapids/aiohttp-3.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=df72ac063b97837a80d80dec8d54c241af059cc9bb42c4de68bd5b61ceb37caa
aiosignal @ file:///rapids/aiosignal-1.3.1-py3-none-any.whl#sha256=f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17
alabaster==0.7.16
aniso8601==9.0.1
annotated-types==0.5.0
antlr4-python3-runtime==4.9.3
anyio==4.3.0
apex @ file:///opt/pytorch/apex
appdirs==1.4.4
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
asciitree==0.3.3
asttokens==2.4.0
astunparse==1.6.3
async-timeout @ file:///rapids/async_timeout-4.0.3-py3-none-any.whl#sha256=7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028
attrdict==2.0.1
attrs==23.1.0
audioread==3.0.1
Babel==2.14.0
backcall==0.2.0
bcrypt==4.1.2
beautifulsoup4==4.12.2
black==19.10b0
bleach==6.0.0
blis==0.7.11
boto3==1.34.79
botocore==1.34.79
braceexpand==0.1.7
Brotli==1.1.0
cachetools==5.3.1
catalogue==2.0.10
causal-conv1d==1.2.0.post2
cdifflib==1.2.6
certifi==2023.7.22
cffi==1.16.0
charset-normalizer @ file:///rapids/charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=193cbc708ea3aca45e7221ae58f0fd63f933753a9bfb498a3b474878f12caaad
click==8.0.2
clip==0.2.0
cloudpathlib==0.15.1
cloudpickle @ file:///rapids/cloudpickle-2.2.1-py3-none-any.whl#sha256=61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f
cmake==3.27.6
colorama==0.4.6
comm==0.1.4
confection==0.1.3
contourpy==1.1.1
cryptography==42.0.5
cubinlinker @ file:///rapids/cubinlinker-0.3.0%2B2.gce0680b-cp310-cp310-linux_x86_64.whl#sha256=8cff93be2d63d7db8f1d15fc72cf813abe3d8fd31c35be439e3fb6b7b4c89f76
cuda-python @ file:///rapids/cuda_python-12.2.0rc5%2B5.g84845d1-cp310-cp310-linux_x86_64.whl#sha256=19bb8c6dd62e976182ff183aab18d2c9f0a698add93a1037f2cbaa5d0f739d9d
cudf @ file:///rapids/cudf-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=12228d0949a6be3a7a383262f77c37372d48e02e57c4d0b8ed3763ced4d26ccb
cugraph @ file:///rapids/cugraph-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=209757e66f1ef51a5bace52774f9fc5575cdc6a00e11287ca8f0be78f57a9661
cugraph-dgl @ file:///rapids/cugraph_dgl-23.8.0-py3-none-any.whl#sha256=ef49cc4464b39aa686b97faa50186bd104cf965a7b7215c7ffb7b94011b6bcea
cugraph-service-client @ file:///rapids/cugraph_service_client-23.8.0-py3-none-any.whl#sha256=54d3f0367285be37ed4166483e4402e71e6a4747fb55e5a32a6ca9abfe264cb5
cugraph-service-server @ file:///rapids/cugraph_service_server-23.8.0-py3-none-any.whl#sha256=1fd5d70166ff9023c2b451f63e1a4a25c0e55e018811fc1549f52dffb7a422f6
cuml @ file:///rapids/cuml-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=f9209e5d1e2c765a4bc0b2955e4bc29016b9c4186b7e0512553f3fff879bf697
cupy-cuda12x @ file:///rapids/cupy_cuda12x-12.1.0-cp310-cp310-linux_x86_64.whl#sha256=840d1f4560436be5aaa9b6071d4947a391ab8c7b4810f035fc7815d43c29ed6d
cycler==0.12.1
cymem==2.0.8
Cython==3.0.3
cytoolz==0.12.3
dask @ file:///rapids/dask-2023.7.1-py3-none-any.whl#sha256=8ca3969805dd1cceee66f1138f103fba6fbaf22ba488f15b2382b4579ee39f02
dask-cuda @ file:///rapids/dask_cuda-23.8.0-py3-none-any.whl#sha256=68d2bef0df1307a28a0306e3501d63e6d19994d8bbe5e5dccd8b0967bcca8d30
dask-cudf @ file:///rapids/dask_cudf-23.8.0-py3-none-any.whl#sha256=8783c9089041462b8a4418d8645db2a7b2bc32c4c4b1800512f387d466ee1f16
datasets==2.18.0
debugpy==1.8.0
decorator==5.1.1
defusedxml==0.7.1
diffusers==0.27.2
dill==0.3.8
diskcache==5.6.3
Distance==0.1.3
distributed @ file:///rapids/distributed-2023.7.1-py3-none-any.whl#sha256=1237f8ae11baa9f80070329a33f9d5af32da5c272a98bab088c9b0578c2d816e
distro==1.9.0
dm-tree==0.1.8
docker-pycreds==0.4.0
docopt==0.6.2
docutils==0.20.1
editdistance==0.8.1
einops==0.7.0
einops-exts==0.0.4
exceptiongroup==1.1.3
execnet==2.0.2
executing==2.0.0
expecttest==0.1.3
faiss-cpu==1.8.0
fastapi==0.110.1
fasteners==0.19
fastjsonschema==2.18.1
fastrlock @ file:///rapids/fastrlock-0.8.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_24_x86_64.whl#sha256=d6c53abeae3f9a55b5c65824cec9df59159fa50e8fa800a5c6e8de42b2219c28
fasttext==0.9.2
filelock==3.12.4
flash-attn==2.4.2
Flask==2.2.5
Flask-RESTful==0.3.10
fonttools==4.43.1
frozenlist @ file:///rapids/frozenlist-1.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6918d49b1f90821e93069682c06ffde41829c346c66b721e65a5c62b4bab0300
fsspec @ file:///rapids/fsspec-2023.6.0-py3-none-any.whl#sha256=1cbad1faef3e391fba6dc005ae9b5bdcbf43005c9167ce78c915549c352c869a
ftfy==6.2.0
furl==2.1.3
future==1.0.0
g2p-en==2.1.0
gast==0.5.4
gdown==5.1.0
gevent==24.2.1
geventhttpclient==2.0.2
gitdb==4.0.11
GitPython==3.1.43
google-ai-generativelanguage==0.6.2
google-api-core==2.18.0
google-api-python-client==2.126.0
google-auth==2.23.2
google-auth-httplib2==0.2.0
google-auth-oauthlib==0.4.6
google-generativeai==0.5.1
googleapis-common-protos==1.63.0
graphsurgeon @ file:///workspace/TensorRT-8.6.1.6/graphsurgeon/graphsurgeon-0.4.6-py2.py3-none-any.whl#sha256=0fbadaefbbe6e9920b9f814ae961c4a279be602812edf3ed7fb9cc6f8f4809fe
greenlet==3.0.3
grpcio==1.62.2
grpcio-status==1.62.2
h11==0.14.0
h5py==3.10.0
html2text==2024.2.26
httpcore==1.0.5
httplib2==0.22.0
httptools==0.6.1
httpx==0.27.0
huggingface-hub==0.22.2
hydra-core==1.3.2
hypothesis==5.35.1
idna==3.4
ijson==3.2.3
imageio==2.34.0
imagesize==1.4.1
importlib-metadata @ file:///rapids/importlib_metadata-6.8.0-py3-none-any.whl#sha256=3ebb78df84a805d7698245025b975d9d67053cd94c79245ba4b3eb694abe68bb
inflect==7.2.0
iniconfig==2.0.0
intel-openmp==2021.4.0
interegular==0.3.3
intervaltree==3.1.0
ipykernel==6.25.2
ipython==8.16.1
ipython-genutils==0.2.0
ipywidgets==8.1.2
isort==5.13.2
itsdangerous==2.1.2
jedi==0.19.1
jieba==0.42.1
Jinja2==3.1.2
jiwer==2.5.2
jmespath==1.0.1
joblib==1.3.2
json5==0.9.14
jsonschema==4.19.1
jsonschema-specifications==2023.7.1
jupyter-tensorboard @ git+https://github.com/cliffwoolley/jupyter_tensorboard.git@ffa7e26138b82549453306e06b535a9ac36db17a
jupyter_client==8.3.1
jupyter_core==5.3.2
jupyterlab==2.3.2
jupyterlab-pygments==0.2.2
jupyterlab-server==1.2.0
jupyterlab_widgets==3.0.10
jupytext==1.15.2
kaldi-python-io==1.2.2
kaldiio==2.18.0
kiwisolver==1.4.5
kornia==0.7.2
kornia_rs==0.1.3
langcodes==3.3.0
lark==1.1.9
latexcodec==3.0.0
lazy_loader==0.4
Levenshtein==0.22.0
lhotse==1.22.0
librosa==0.10.1
lightning-utilities==0.11.2
lilcom==1.7
llvmlite @ file:///rapids/llvmlite-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bbd5e82cc990e5a3e343a3bf855c26fdfe3bfae55225f00efd01c05bbda79918
locket @ file:///rapids/locket-1.0.0-py2.py3-none-any.whl#sha256=b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3
loguru==0.7.2
lxml==5.2.1
mamba-ssm==1.2.0.post1
Markdown==3.4.4
markdown-it-py==3.0.0
markdown2==2.4.13
MarkupSafe==2.1.3
marshmallow==3.21.1
matplotlib==3.8.0
matplotlib-inline==0.1.6
mdit-py-plugins==0.4.0
mdurl==0.1.2
megatron_core==0.5.0
mistune==3.0.2
mkl==2021.1.1
mkl-devel==2021.1.1
mkl-include==2021.1.1
mock==5.1.0
more-itertools==10.2.0
mpmath==1.3.0
msgpack @ file:///rapids/msgpack-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e42b9594cc3bf4d838d67d6ed62b9e59e201862a25e9a157019e171fbe672dd3
multidict @ file:///rapids/multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93
multiprocess==0.70.16
murmurhash==1.0.10
nbclient==0.8.0
nbconvert==7.9.2
nbformat==5.9.2
nemo_text_processing==0.3.0rc0
nemo_toolkit==1.23.0
nerfacc==0.5.3
nest-asyncio==1.5.8
networkx==2.6.3
ninja==1.11.1.1
nltk==3.8.1
notebook==6.4.10
numba @ file:///rapids/numba-0.57.1%2B1.g5fba9aa8f-cp310-cp310-linux_x86_64.whl#sha256=348d18dbb5ce363133fa7d033ae804b5440bf51778395f08b337a9ca6ac98e53
numcodecs==0.12.1
numpy==1.24.4
nvfuser==0.0.20+gitunknown
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu12==8.9.2.26
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu12==12.1.0.106
nvidia-dali-cuda120==1.30.0
nvidia-nccl-cu12==2.18.1
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.1.105
nvidia-pyindex==1.0.9
nvtx @ file:///rapids/nvtx-0.2.5-cp310-cp310-linux_x86_64.whl#sha256=b8024910cace4d07e6c9677eaf3be1b3e626fa1923ec6e3c7e5d3fdca053c9c9
oauthlib==3.2.2
omegaconf==2.3.0
onnx @ file:///opt/pytorch/pytorch/third_party/onnx
open-clip-torch==2.24.0
openai==1.16.2
OpenCC==1.1.6
opencv @ file:///opencv-4.7.0/modules/python/package
orderedmultidict==1.0.1
outlines==0.0.34
packaging @ file:///rapids/packaging-23.1-py3-none-any.whl#sha256=994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61
pandas @ file:///rapids/pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23
pandocfilters==1.5.0
pangu==4.0.6.1
parameterized==0.9.0
paramiko==3.4.0
parso==0.8.3
partd @ file:///rapids/partd-1.4.0-py3-none-any.whl#sha256=7a63529348cf0dff14b986db641cd1b83c16b5cb9fc647c2851779db03282ef8
pathspec==0.12.1
pathy==0.10.2
pexpect==4.8.0
pickleshare==0.7.5
Pillow @ file:///tmp/pillow-simd
plac==1.4.3
platformdirs==3.11.0
pluggy==1.3.0
ply @ file:///rapids/ply-3.11-py2.py3-none-any.whl#sha256=096f9b8350b65ebd2fd1346b12452efe5b9607f7482813ffca50c22722a807ce
polygraphy==0.49.0
pooch==1.7.0
portalocker==2.8.2
preshed==3.0.9
prettytable==3.9.0
progress==1.6
prometheus_client==0.20.0
prompt-toolkit==3.0.39
proto-plus==1.23.0
protobuf==4.24.4
psutil @ file:///rapids/psutil-5.9.4-cp310-abi3-linux_x86_64.whl#sha256=e711cfad802fd4061d559d17e9f175e866551434c3418af2925881a3e5f3440e
ptxcompiler @ file:///rapids/ptxcompiler-0.8.1%2B1.g2cb1b35-cp310-cp310-linux_x86_64.whl#sha256=461049ad74511c8d923967e1826861a0d9a2bcee0cfcf3ebc338fc48b3ecc724
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
pyannote.core==5.0.0
pyannote.database==5.1.0
pyannote.metrics==3.2.1
pyarrow==15.0.2
pyarrow-hotfix==0.6
pyasn1==0.5.0
pyasn1-modules==0.3.0
pybind11==2.11.1
pybind11-global==2.11.1
pybtex==0.24.0
pybtex-docutils==1.0.3
pycocotools @ git+https://github.com/nvidia/cocoapi.git@fa44301f7a8b3f95a9f2751d19bfd735b0f6c65d#subdirectory=PythonAPI
pycparser==2.21
pydantic==2.4.2
pydantic_core==2.10.1
pydub==0.25.1
Pygments==2.16.1
pylibcugraph @ file:///rapids/pylibcugraph-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=8327053f864ed56bf0d0d8fb69a2291ca1e044fa1f447e63b85b29bf72102c74
pylibcugraphops @ file:///rapids/pylibcugraphops-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=17364a79cda63c9f6c62ef6f2bd37151a9e70539f6d60e43fb26ab40e163bba2
pylibraft @ file:///rapids/pylibraft-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=f74580fec4d0e1603f9b3027da33d915ce07a37d2790c28b1d784d133e90a6d2
pyloudnorm==0.1.1
PyMCubes==0.1.4
PyNaCl==1.5.0
pynini==2.1.5
pynvml==11.5.0
pyparsing==3.1.1
pypinyin==0.51.0
pypinyin-dict==0.8.0
PySocks==1.7.1
pytest==7.4.2
pytest-flakefinder==1.1.0
pytest-rerunfailures==12.0
pytest-runner==6.0.1
pytest-shard==0.1.2
pytest-xdist==3.3.1
python-dateutil==2.8.2
python-dotenv==1.0.1
python-hostlist==1.23.0
python-rapidjson==1.16
pytorch-lightning==2.0.7
pytorch-quantization==2.1.2
pytz @ file:///rapids/pytz-2023.3-py2.py3-none-any.whl#sha256=a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb
PyYAML==6.0.1
pyzmq==25.1.1
raft-dask @ file:///rapids/raft_dask-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=9464bd2889aff217d63f2ff804f06328123119e72745399900315fc85f4d6b7e
rapidfuzz==2.13.7
ray==2.10.0
referencing==0.30.2
regex==2023.10.3
requests==2.31.0
requests-oauthlib==1.3.1
resampy==0.4.2
rich==13.7.1
rmm @ file:///rapids/rmm-23.8.0-cp310-cp310-linux_x86_64.whl#sha256=11e3bc42ddfa51f8293ddb37fb006e4dd59fc20534e8f027b5453c8d00fa089f
rotary-emb @ git+https://github.com/HazyResearch/flash-attention.git@f692b98d805850983f14deec7a9104583c58b107#subdirectory=csrc/rotary
rouge-score==0.1.2
rpds-py==0.10.4
rsa==4.9
ruamel.yaml==0.18.6
ruamel.yaml.clib==0.2.8
s3transfer==0.10.1
sacrebleu==2.4.1
sacremoses==0.1.1
safetensors==0.4.2
scikit-learn @ file:///rapids/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=184a42842a4e698ffa4d849b6019de50a77a0aa24d26afa28fa49c9190bb144b
scipy @ file:///rapids/scipy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=366a6a937110d80dca4f63b3f5b00cc89d36f678b2d124a01067b154e692bab1
Send2Trash==1.8.2
sentence-transformers==2.6.1
sentencepiece==0.2.0
sentry-sdk==1.44.1
setproctitle==1.3.3
shellingham==1.5.4
six==1.16.0
smart-open==6.4.0
smmap==5.0.1
sniffio==1.3.1
snowballstemmer==2.2.0
sortedcontainers==2.4.0
soundfile==0.12.1
soupsieve==2.5
sox==1.5.0
soxr==0.3.7
spacy==3.7.1
spacy-legacy==3.0.12
spacy-loggers==1.0.5
Sphinx==7.2.6
sphinx-glpi-theme==0.3
sphinxcontrib-applehelp==1.0.8
sphinxcontrib-bibtex==2.6.2
sphinxcontrib-devhelp==1.0.6
sphinxcontrib-htmlhelp==2.0.5
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.7
sphinxcontrib-serializinghtml==1.1.10
srsly==2.4.8
sshtunnel==0.4.0
sshtunnel-requests==0.1.3
stack-data==0.6.3
starlette==0.37.2
sympy==1.12
tabulate==0.9.0
taming-transformers==0.0.1
tbb==2021.10.0
tblib @ file:///rapids/tblib-2.0.0-py3-none-any.whl#sha256=9100bfa016b047d5b980d66e7efed952fbd20bd85b56110aaf473cb97d18709a
tenacity==8.2.3
tensorboard==2.9.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorrt @ file:///workspace/TensorRT-8.6.1.6/python/tensorrt-8.6.1-cp310-none-linux_x86_64.whl#sha256=2684b4772cb16088184266728a0668f5dac14e66f088c4ccff2096ccb222d74c
tensorstore==0.1.45
termcolor==2.4.0
terminado==0.17.1
text-unidecode==1.3
textdistance==4.6.1
texterrors==0.4.4
thinc==8.2.1
threadpoolctl==3.2.0
thriftpy2 @ file:///rapids/thriftpy2-0.4.16-cp310-cp310-linux_x86_64.whl#sha256=3b41ffe57f0a10ee592e06b4843e37ae1bc7f0309a2478f0bf1368ede2ad4ed4
tiktoken==0.6.0
timm==0.9.16
tinycss2==1.2.1
tokenizers==0.15.2
toml==0.10.2
tomli==2.0.1
toolz @ file:///rapids/toolz-0.12.0-py3-none-any.whl#sha256=2059bd4148deb1884bb0eb770a3cde70e7f954cfbbdc2285f1f2de01fd21eb6f
torch==2.1.2
torch-tensorrt @ file:///opt/pytorch/torch_tensorrt/dist/torch_tensorrt-0.0.0-cp310-cp310-linux_x86_64.whl#sha256=239cc59958283c8fd764ec360b93adf63db94d231c6dbae3212736187d1c1f21
torchdata @ file:///opt/pytorch/data
torchdiffeq==0.2.3
torchmetrics==1.3.2
torchsde==0.2.6
torchtext @ file:///opt/pytorch/text
torchvision==0.16.2
tornado==6.3.3
tqdm==4.66.1
traitlets==5.9.0
trampoline==0.1.2
transformer-engine @ git+https://github.com/NVIDIA/TransformerEngine.git@0fbc76af3733ae997394eaf82b78ff9c0498fe91
transformers==4.39.3
treelite @ file:///rapids/treelite-3.2.0-cp310-cp310-linux_x86_64.whl#sha256=7627a3fed44ce1dda4c35ce707cca4b6108d74a661997c0451be59d03f2155ca
treelite-runtime @ file:///rapids/treelite_runtime-3.2.0-cp310-cp310-linux_x86_64.whl#sha256=085ec1ba71007d357ecebb493c490133c20778cd51d8662a0a10d1dc56b1623e
trimesh==4.2.4
triton @ file:///tmp/dist/triton-2.1.0%2Be621604-cp310-cp310-linux_x86_64.whl#sha256=86f1f780205ac37c236306b5902cb3302c09091058b90902e1d06890ad87a6d9
tritonclient==2.44.0
typed-ast==1.5.5
typeguard==4.2.1
typer==0.12.1
types-dataclasses==0.6.6
typing_extensions==4.11.0
ucx-py @ file:///rapids/ucx_py-0.33.0-cp310-cp310-linux_x86_64.whl#sha256=55d9f5f80627ba1f00577fca41ecd6ab8c72cc518e392a078d108b7dbd809c1e
uff @ file:///workspace/TensorRT-8.6.1.6/uff/uff-0.6.9-py2.py3-none-any.whl#sha256=618a3f812d491f0d3c4f2e38b99e03217ca37b206db14cee079f2bf681eb4fe3
uritemplate==4.1.1
urllib3==2.2.1
uvicorn==0.29.0
uvloop==0.19.0
vllm==0.4.0.post1
wandb==0.16.6
wasabi==1.1.2
watchfiles==0.21.0
wcwidth==0.2.13
weasel==0.3.2
webdataset==0.1.62
webencodings==0.5.1
websockets==12.0
Werkzeug==3.0.0
wget==3.2
widgetsnbextension==4.0.10
wonderwords==2.2.0
wrapt==1.16.0
xdoctest==1.0.2
xformers==0.0.23.post1
xgboost @ file:///rapids/xgboost-1.7.5-cp310-cp310-linux_x86_64.whl#sha256=56f29fb999f8272bf8498ecbaf0659de4becf693b96a545f0e52f627270cf80d
xxhash==3.4.1
yarl @ file:///rapids/yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608
youtokentome==1.0.6
zarr==2.17.2
zict @ file:///rapids/zict-3.0.0-py2.py3-none-any.whl#sha256=5796e36bd0e0cc8cf0fbc1ace6a68912611c1dbd74750a3f3026b9b9d6a327ae
zipp @ file:///rapids/zipp-3.16.2-py3-none-any.whl#sha256=679e51dd4403591b2d6838a48de3d283f3d188412a9782faadf845f298736ba0
zope.event==5.0
zope.interface==6.2